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Abstract. In this article, lump solutions, lump with I-kink, lump with II- kink, periodic, multiwaves,
rogue waves and several other interactions such as lump interaction with II-kink, interaction
between lump, lump with I-kink and periodic, interaction between lump, lump with II-kink and
periodic are derived for Pavlov equation by using appropriate transformations. Additionally, we
also present 3-dimensional, 2-dimensional and contour graphs for our solutions.

Keywords: Pavlov equation, lump and multiwaves, rogue waves, ansatz transformations.

1 Introduction

Nonlinear evolution equations (NLEEs) are significantly used to observe numerous phys-
ical phenomena that appear in mathematical physics, condensed matter physics, water
surface gravity waves, ion-acoustic waves in plasmas etc. [7, 9, 27, 29, 30, 36]. The exact
solutions for NLEEs play a vital role to study the dynamics of the evolution of native
phenomena. There are so many nonlinear integrable models in various fields of sciences
that consist of so many types of soliton solutions like bright and singular dromions,
domain walls, complexitons, positons and lump solitons [2]. Since for the discovery of
solitons, so many integration strategies like inverse scattering transformation [1], Hi-
rota bilinear approach (HBA) [24], fractional Ricatti method [32], tanh-coth approach
[11], homogeneous balance approach, Jacobi elliptic function technique [10], Darboux
transformation [35], the (G’/G) expansion architectonic [31] and many other have been
developed to study various nonlinear models arising in distinct areas of sciences like
optical fiber, plasmas physics, fluid mechanics, biology etc.

Solitons play a pivotal role in studying the integrable system. In the community
of mathematical physics, the various solutions such as lump solutions have gathered
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considerable attention in current years. Lump solutions are primarily rational function
solutions confined in all possible directions in the space. Same as solitons, they have
several major applications in nonlinear dynamics. For instance, they could be applied to
express nonlinear figured in plasma and nonlinear optic media etc. Over the ages, lump
solutions have been set up and discussed for numerous integrable equations, for instance,
Kadomtsev–Petviashvili equation [23], the B-Kadomtsev–Petviashvili equation (BKP)
[37] and the Ishimori-II equation [14].

In mathematics, a wave train or a periodic travelling wave defined as a periodic
function of one dimensional space that moves with constant speed. In consequence, it
is a particular class of spatiotemporal oscillation that is specifically a periodic function
of time as well as space. Periodic waves contribute a vital role in various mathematical
equations together with excitable systems, self-oscillatory systems and reaction diffusion
advection system. Rogue waves, familiar as freak waves, episodic waves, monster waves,
killer waves, abnormal waves and extreme waves are generally huge unpredictable and in-
stantly emerging surface waves. In general, rogue waves, known also as oceanic phenom-
ena, have come to play a vital role in comprehension of observational nature of various
phenomena. Rogue waves give extensive understanding of an unexposed phenomenon.
Many researchers have shown significant contributions in the interactions between lump,
periodic, multi solitons and rogue wave [34]. Guo et al. found lump solutions, lump
with one-strip solution and observed their interactions with the different combinations
of exponential functions of dimensionally reduced NLEEs [13]. In [17], Liu worked on
lump soliton solutions and their interactions with the double exponential function and
lump with two kink for Korteweg–De Vries equation (KdV). In [4], Ahmed et al. analyzed
M -shaped rational solitons and the interactions with kink solution waves. In [3], Ahmed
et al. worked on monoclinic breather solution and found interactional phenomena with
the multikink waves and multiwave for an NLEE. Ma established Riemann–Hilbert prob-
lems and presenting soliton solutions for nonlocal reverse-time nonlinear Schrödinger
hierarchies associated with higher-order matrix spectral problems [20]. Ma conducted
two nonlocal group reductions of the AKNS matrix spectral problems to generate a class
of nonlocal reverse-spacetime integrable mKdV equations [18]. Ma proposed a kind of
nonlocal real reverse-spacetime integrable hierarchies of PT-symmetric matrix AKNS
equations through nonlocal symmetry reductions on the potential matrix [19]. A kind of
novel reduced nonlocal integrable mKdV equations of odd order was presented by taking
two group reductions of the AKNS matrix spectral problems [21, 22].

We intend to obtain distinct forms of lump soliton and their interactions like lump
with I-kink, lump with II-kink, periodic waves, interaction between periodic lump and
kink wave, multiwave solutions and rogue wave solitons for well-defined Pavlov equation
[15]. We will use ansatz transformations to obtain these lump solutions with constraint
conditions

Ωxx = Ωtx +ΩyΩxx −ΩxΩxy, (1)

whereΩ(x, y, t) represents the amplitude of the related wave. Equation (1) emerge during
the investigation of integrable hydrodynamic chains [8]. The above equation is a nonlinear
differential equation, which is an example of integrable dispersion. The governing model
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is classified among the elementary integrable systems of vector fields make an appearance
from several problems of differential geometry and mathematical physics.

The content of this paper is arranged as follows. In Section 2, we find out lump soli-
tons. In Section 3, we will investigate lump with I-kink solutions. In Section 4, we present
lump with II-kink solution. In Section 5, we present periodic solutions. In Section 6, we
evaluate rogue wave. In Section 7, we will evaluate multiwave solutions. In Section 8, we
will study result and discussions, and in Section 9, we will present concluding remarks.

2 Lump solitons

In order to compute lump solitons for Eq. (1), we use the transformation [40]

Ω = m0 + 2β(ln ρ)x. (2)

By using Eq. (2) into Eq. (1) we obtain the following bilinear form:

2ρρy
3 − 3ρ2ρyρyy + ρ3ρyyy − 2ρρtρyρx + 2ρρtρyρx + ρ2ρytρx

− 2βρyρyyρ
2
x + ρ2ρyρxt + ρ2ρtρxy + 4βρ2yρxρxy + 2βρρyyρxρxy

− 4βρρyρ
2
xy − ρ3ρxyt − 2βρρyρxρxyy + 2βρ2ρxy + ρxyy − 2βρ3yρxt

+ 2βρρyρyyρxx + 2βρρ2yρxxy − 2βρ2ρyyρxxy = 0. (3)

Now we use Eq. (3) to formulate lump solutions with the help of the following transfor-
mation [26]:

ρ = φ2 + ψ2 + ξ9, (4)
where

φ2 = ξ1x+ ξ2y + ξ3t+ ξ4, ψ2 = ξ5x+ ξ6y + ξ7t+ ξ8.

However, ξα (1 6 α 6 9), are arbitrary parameters to be determined. Now, by replacing
Eq. (4) into Eq. (3) relating the coefficients of x, y and t, we get the system of equations.

2.1 Set-I

Considering ξ1 = 0, ξ4 = 0 and ξ6 = 0 and using the obtained system of equations, we
get reduced system of equations. By solving reduced system of equations using Maple
we determined the following parameters:

ξ3 =
√
−2ξ7, ξ5 =

−3ξ22

2ξ7
, ξ7 = ξ7, ξ8 = ξ8, ξ9 =

−3ξ24

2ξ7
2 .

We use parameters in Eq. (4), then we use (2) to produce the required solution of Eq. (1).

Ω(x, y, t) = m0 + 4ξ2β(ı
√
2ξ7t+ ξ2y)

×
(
−3ξ42β
2ξ27

+

(
ξt7 −

3ξ22x

2ξ7

)2
+ ı(
√
2ξ7t+ ξ2y)

2

)−1
, (5)

where Ω represents the lump solution of Eq. (1).
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(a) t = −5 (b) t = 0 (c) t = 5

Figure 1. The 3-D graphs for Ω(x, y, t) in Eq. (5) are presented with the following values of parameters:
ξ2 = 1, ξ7 = −0.75, ξ8 = 1, m0 = 0.5, β = −0.1 in interval −5 6 x 6 5 and −1 6 y 6 1.

(a) t = −5 (b) t = 0 (c) t = 5

Figure 2. The 2-D graphs for theΩ(x, y, t) in Eq. (5) are shown with the following parametric values: ξ2 = 1,
ξ7 = −0.75, ξ8 = 1, m0 = 0.5, β = −0.1.

(a) t = −5 (b) t = 0 (c) t = 5

Figure 3. The contour graphs for Ω(x, y, t) in Eq. (5) are presented with the following values of parameters:
ξ2 = 1, ξ7 = −0.75, ξ8 = 1, m0 = 0.5, β = −0.1 in interval −5 6 x 6 5 and −1 6 y 6 1.

2.2 Set-II

Taking ξ1 = 0, ξ4 = 0 and ξ6 = 0 and using the obtained system of equations, we get
the reduced system of equations. By solving reduced system of equations using Maple we
found the values of parameters:

ξ2 = ξ2, ξ3 = 0, ξ5 =
−3ξ22y
4ξ7

, ξ7 = ξ7, ξ8 = ξ8, ξ9 =
−3ξ42β
4ξ27

.
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We use the above parameters in Eq. (4), then we use Eq. (2) to reveal the required solution
of Eq. (1).

Ω(x, y, t) = m0 + 4ξ22βy

(
−3ξ42β
4ξ27

+

(
ξ8 + ξ7t−

3ξ22x

4ξ7

)2
+ ξ22y

2

)−1
,

where Ω specify the lump solution of Eq. (1).

3 Lump with I-kink

We use the bilinear form presented in Eq. (3) and the transformation [39]

ρ = φ2 + ψ2 + ξ9 + b1e
ρ1 , (6)

where

φ2 = ξ1x+ ξ2y + ξ3t+ ξ4, ψ2 = ξ5x+ ξ6y + ξ7t+ ξ8,

ρ1 = λ1x+ λy + λ3t.

However, ξα (1 6 α 6 9), λ1, λ2 and λ3 all are specific parameters to be calculated. By
substituting Eq. (6) into Eq. (3) and resolving the coefficients of x, y, t and exponential
term, we found the system of equations.

3.1 Set-I

We consider ξ3 = ξ6 = ξ8 = 0. Using the obtained system of equations, we get the
reduced system of equations. By solving reduced system of equations using Maple we
get the values of parameters:

ξ1 = ξ1, ξ2 = ξ2, ξ4 =
−1
2
ξ2
√
2
√
3, ξ5 = ξ5, ξ7 = ξ7, ξ9 = ξ9,

λ1 =

√
−1
6 (−4bξ25 − 45ξ22b)

ξ2
, λ2 =

1

3

√
2
√
3,

λ3 =
ξ2√

−1
6 (−4bξ25 − 45ξ22b)

.

By substituting the above parameters into Eq. (6), then using Eq. (2) we find the required
lump with I-kink solution for Eq. (1)

Ω(x, y, t) = m0 + 2β

(√
2

3
A b1 + 2ξ2

(
ξ1x+ 2ξ2

(
ξ1x+ ξ2

(
−
√

3

2
+ y

))))
×
(
ξ9 + A b1 + (ξ7t+ ξ5x)

2 +

(
ξ1x+ ξ2

(
−
√

3

2
+ y

))2)−1
, (7)

where A = exp{6ξ2t/
√
45ξ22/β + 4ξ25 +

√
45ξ22/β + 4ξ25x/ξ2 + 2y}.
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(a) t = −10 (b) t = 0 (c) t = 10

Figure 4. The 3-D graphs for Ω(x, y, t) in Eq. (7) are presented with the following values of parameters:
ξ1 = 10, ξ2 = 20, ξ5 = 5, ξ7 = 2, ξ9 = 2, m0 = 1, β = 2, b1 = 22 in interval −10 6 x 6 10 and
−5 6 y 6 5.

(a) t = −10 (b) t = 0 (c) t = 10

Figure 5. The 2-D graphs forΩ(x, y, t) in Eq. (7) are presented with the following parametric values: ξ1 = 10,
ξ2 = 20, ξ5 = 5, ξ7 = 2, ξ9 = 2, m0 = 1, β = 2, b1 = 22.

(a) t = −10 (b) t = 0 (c) t = 10

Figure 6. The contour graphs for Ω(x, y, t) in Eq. (7) are presented with the following values of parameters:
ξ1 = 10, ξ2 = 20, ξ5 = 5, ξ7 = 2, ξ9 = 2, m0 = 1, β = 2, b1 = 22 in interval −10 6 x 6 10 and
−5 6 y 6 5.

3.2 Set-II

We take ξ3 = ξ6 = ξ8 = 0. Using the obtained system of equations, we get reduced
system of equations. By solving reduced system of equations using Maple we get the
values of parameters:
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ξ1 = ξ1, ξ4 = ξ4, ξ5 = ξ5, ξ7 = ξ7, ξ9 = ξ9, λ1 = λ1,

λ2 =

√
−9βλ21ξ24 + 9βξ25 + 81ξ24ξ4
βλ21ξ

2
4 − βξ25 − 3ξ24

, λ3 =
−3(βλ21 + ξ24 − βξ25 − 9ξ24)

λ1(βλ21 + ξ24 − βξ25 − 3ξ24)
,

ξ2 =

√
−9βλ21ξ24 + 9βξ25 + 81ξ24ξ4
βλ21ξ

2
4 − βξ25 − 3ξ24

.

Using the above parameters into Eq. (6) and using Eq. (2), we get the required lump with
I-kink solution for Eq. (1).

Ω(x, y, t) = m0 + 2β

(
3B+ 3λ1ξ4

√(
9− βλ21 + βξ25

)
b1

− 6ξ24
√
(9− βλ21 + βξ25)b1

(−3 + βλ21)ξ
2
4 − βξ25

(
ξ4 + ξ3t+ ξ1x−

3ξ24
√
(9− βλ21)ξ24 + βξ25y

(−3 + βλ21)ξ
2
4 − βξ25

+ 2ξ6(ξ8 + ξ7t+ ξ6y + ξ5x)

))
×
(
ξ9 +Bb1 +

(
ξ4 + ξ3t+ ξ1x−

3ξ24
√
(9− βλ21)ξ24 + βξ25y

(−3 + βλ21)ξ
2
4 − βξ25

)2
+ (ξ8 + ξ7t+ ξ5x+ ξ6y)

2

)−1
, (8)

where B = exp{(βξ25(3t − λ21x)ξ
2
4(−3(−9 + βλ21)t + λ21(−3 + βλ21)x) + 3λ1ξ4)/

(λ1(−3 + βλ21)ξ
2
4 − βξ25)}. In Eq. (8), Ω represents the lump with I-kink solution of

Eq. (1).

4 Lump with II-kink

For lump with II-kink, we use bilinear equation given in Eq. (3) along with following
transformation [28]:

ρ = φ2 + ψ2 + ξ9 + b1e
ρ1 + b2e

ρ2 , (9)
where

φ2 = ξ1x+ ξ2y + ξ3t+ ξ4, ψ2 = ξ5x+ ξ6y + ξ7t+ ξ8,

ρ1 = λ1x+ λ2y + λ3t, ρ2 = λ4x+ λ5y + λ6,

where ξα (1 6 α 6 9) and λi (1 6 i 6 6) are all parameters to be found. By replacing
Eq. (9) into Eq. (3) and calculating the coefficients of t, y, x and exponential terms we
obtain system of equations, where Ω represents the lump with II-kink solution of Eq. (1).

4.1 Set-I

We assume ξ1 = ξ4 = ξ6 = λ2 = λ1 = 0. With the aid of the above mentioned assump-
tions and using the obtained system of equations we get reduced system of equations. By
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solving reduced system of equations using Maple we get the values of parameters:

ξ2 =
λ5ξ3(2λ

2
4ξ7 + 3λ25ξ5 − 2ξ5)

λ4ξ7
, ξ3 = ξ3, ξ5 = ξ5, ξ7 = ξ7,

ξ9 = λ3 =
−3(λ25 − 1)

λ4
, λ4 = λ4, λ5 = λ5, λ6 =

1

λ4
,

ξ8 =
(
12λ44λ

2
5ξ

2
3ξ

2
7 + 36λ24λ

4
5ξ

2
3ξ5ξ7 + 27λ65ξ

2
3ξ

2
5 − 24λ24λ

2
5ξ

2
3ξ5ξ7

− 36λ45ξ
2
3ξ

2
5 + 4λ24ξ

2
3ξ5ξ7 + 8λ24ξ5ξ

3
7 + 12λ25ξ

2
3ξ

2
5

)
×
(
36
(
ξ5ξ

2
7λ4(λ5 − 1)(λ5 + 1)

))−1
.

We use the above parameters in Eq. (9), then in Eq. (2) to exhibit the lump with II-kink
solution for Eq. (1). We get

Ω(x, y, t)

= m0 + 2β

(
λ5e

t/λ4+λ4x+λ5yb2

+ 2

(
λ4λ5ξ3 +

λ5(−2 + 3λ25)ξ3ξ5
2λ4ξ7

)(
ξ3t+ λ4λ5ξ3y +

λ5(−2 + 3λ25)ξ3ξ5y

2λ4ξ7

))
×
(
ξ7 + e−3(−1+λ

2
5)t/λ4b1 + et/λ4+λ4x+λ5yb2 + 27λ65ξ

2
3ξ

2
5

− 36λ45ξ
2
3ξ5
(
ξ5 − λ24ξ7λ4

(
ξ23 + 2ξ27 − 9ξ7t+ ξ5x

))
+

12λ25ξ
2
3(ξ5 − λ24ξ7)2 + 3λ4ξ5ξ

2
7(ξ7t+ ξ5x))

2

1296λ24(−1 + λ5)2(1 + λ5)2ξ25ξ
4
7

+

(
ξ3t+ λ4λ5ξ3y

λ5(−2 + 3λ25)ξ3ξ5y

2λ4ξ7

))−1
. (10)

In Eq. (10), Ω represents the lump with II-kink solution of Eq. (1).

(a) t = 0 (b) t = 1 (c) t = 1.5

Figure 7. The 3-D graphs for Ω(x, y, t) in Eq. (10) are presented with the following values of parameters:
m0 = 1, λ5 = 2, λ4 = 0.1, b2 = 0.6, ξ3 = 28, ξ5 = 10, ξ7 = 50, β = 2, b1 = 4 in interval
−10 6 x 6 10 and −5 6 y 6 5.
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(a) t = 0 (b) t = 1 (c) t = 1.5

Figure 8. The 2-D graphs for Ω(x, y, t) in Eq. (10) are presented with the following parametric values: m0 =
1, λ5 = 2, λ4 = 0.1, b2 = 0.6, ξ3 = 28, ξ5 = 10, ξ7 = 50, β = 2, b1 = 4.

(a) t = 0 (b) t = 1 (c) t = 1.5

Figure 9. The contour graphs for Ω(x, y, t) in Eq. (10) are presented with the following values of parameters:
m0 = 1, λ5 = 2, λ4 = 0.1, b2 = 0.6, ξ3 = 28, ξ5 = 10, ξ7 = 50, β = 2, b1 = 4 in interval −10 6 x 6 10
and −5 6 y 6 5.

4.2 Set-II

We consider ξ1 = ξ4 = ξ6 = λ2 = λ1 = 0. With the help of these assumptions and
using the obtained system of equations, we get reduced system of equations. By solving
reduced system of equations using Maple we get the values of parameters:

ξ1 = ξ4 = ξ6 = λ2 = λ1 = 0, λ3 =
−3λ25
λ4

, λ4 = λ4, λ5 = λ5,

λ6 = 0, ξ2 = ξ2, ξ3 = ξ3, ξ5 =
−2λ24ξ7
λ25

,

ξ7 = ξ7, ξ9 = ξ9, ξ8 =
2λ24ξ

2
3 + 4λ24ξ

2
7 − 9λ25ξ

2
2

18ξ7λ4λ25
.

Using the above parameters into Eq. (9) and using Eq. (2), we get the lump with II-kink
solution for Eq. (1).

Ω(x, y, t) = m0 + 2βλ5e
λ4x+λ5yb2

(
ξ7 + e−3λ

2
5t/λ4b1 + eλ4x+λ5yb2 + ξ23t

2

+

(
2λ24ξ

2
3 + 4λ24ξ

2
7

18λ4λ25ξ7
+ ξ7t−

2λ24ξ7x

3λ25

)2)−1
,

where Ω represents the lump with II-kink solution of Eq. (1).
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5 Rouge waves

For rouge wave solution, we use bilinear form presented in Eq. (3) using the transforma-
tion [38],

ρ = φ2 + ψ2 + ξ9 + cosh(λ1x+ λ2y + λ3t+ λ4) (11)
with

φ2 = ξ1x+ ξ2y + ξ3t+ ξ4, ψ2 = ξ5x+ ξ6y + ξ7t+ ξ8,

where ξα (1 6 α 6 9) and λα (1 6 α 6 4) are all real parameters, which we will
examine. Now substituting Eq. (6) into Eq. (3) and computing the coefficients of x, y, t
and trigonometric functions, we get system of equations. After resolving we obtain values
of unknown parameters.

5.1 Set-I

We have taken ξ2 = ξ8 = 0. Using the supposed values, we calculate remaining unknown
parameters:

λ1 =

√
−3
2β

, λ2 =

√
2
√
3

2
, λ3 =

−2
3
β

√
−3
2β

, λ4 = λ4,

ξ1 = ξ1, ξ3 =
√
−3ξ7, ξ4 = ξ4,

ξ5 = ξ5, ξ6 = ξ6, ξ7 = ξ7,

ξ9 =
2

3
βξ5ξ6

√
2
√
3

√
−3
2β
− 4ξ6ξ7

√
2
√
3

√
−3
2β
− 4ξ24 − 10ξ5ξ7 + 6ξ26 .

Using the above parameters in Eq. (11), then using Eq. (2) to reveal the solution of rogue
wave for Eq. (1), we get

Ω(x, y, t) = m0 + 2β

(
2ξ6(ξ7t+ ξ5x+ ξ6y)

+

√
2

3
sinh

(
λ4 +

2t√
−1/β

+ 3
√
−1/βx+ 2y
√
6

))
×
(
−ξ24 + 2

√
−1
β
βξ5ξ6 + ξ26 − 10ξ5ξ7

− 12

√
−1
β
ξ6ξ7 + (ξ4 + ı

√
3ξ7t)

2 + (ξ7t+ ξ5x+ ξ6y)
2

+ cosh

(
λ4 +

2t√
−1/β

+ 3
√
−1/βx+ 2y
√
6

))−1
, (12)

where Ω represents the rogue wave solution of Eq. (1).
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(a) t = −2 (b) t = 0 (c) t = 2

(d) t = 4 (e) t = 6

Figure 10. The 3-D plots for Ω(x, y, t) in Eq. (12) are presented with the following values of parameters:
λ4 = 2, ξ4 = 8, ξ5 = 10, ξ7 = 15, ξ6 = 10, m0 = 0.5, β = 2.

(a) t = −2 (b) t = 0 (c) t = 2

(d) t = 4 (e) t = 6

Figure 11. The 2-D plots forΩ(x, y, t) in Eq. (12) are presented with the following parametric values: λ4 = 2,
ξ4 = 8, ξ5 = 10, ξ7 = 15, ξ6 = 10, m0 = 0.5, β = 2.
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(a) t = −2 (b) t = 0 (c) t = 2

(d) t = 4 (e) t = 6

Figure 12. The contour plots for Ω(x, y, t) in Eq. (12) are presented with the following values of parameters:
λ4 = 2, ξ4 = 8, ξ5 = 10, ξ7 = 15, ξ6 = 10, m0 = 0.5, β = 2.

5.2 Set-II

We have chosen ξ2 = ξ8 = 0. Now by using assumed values we find unknown parame-
ters:

ξ2 = 0, ξ8 = 0, λ1 =

√
−1
β
, λ2 = 1, λ3 = −β

√
−1
β
,

λ4 = λ4, ξ7 = ξ7, ξ1 = ξ1, ξ3 = ξ3, ξ4 = ξ4,

ξ5 =
−(ξ43 + 2ξ23ξ

2
7 − 3ξ47)

βξ7(ξ23 + 18ξ27)
, ξ9 = ξ9, ξ6 =

√
−1
β (ξ23 + 3ξ27)

3ξ7
.

Using the above mentioned parameters in Eq. (11), then using Eq. (2) to give the solution
of rogue wave for Eq. (1), we get

Ω(x, y, t) = m0 + 2β

(
2

√
−1
β

(
ξ23 + 3ξ27

)(
ξ7t+

(−ξ43 − 2ξ23ξ
2
7 + 3ξ47)x

βξ7(ξ23 + 18ξ27)

+

√
−1
β (ξ23 + 3ξ27)y

3ξ7

)
+ sinh

(
λ4 −

√
−1
β
bt+

√
−1
β
x+ y

))
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×
(
ξ9 + (ξ4 + ξ3t+ ξ1x)

2 +

(
ξ7t+

(−ξ43 − 2ξ23ξ
2
7 + 3ξ47)x

βξ7(ξ23 + 18ξ27)

+

√
−1
β (ξ23 + 3ξ27)y

3ξ7

)2
+ cosh

(
λ4 −

√
−1
β
βt+

√
−1
β
x+ y

))−1
,

where Ω specify the rogue wave solution of Eq. (1).

6 Periodic waves

To find periodic wave solutions, we use the following transformation [28]:

ρ = φ2 + ψ2 + ξ9 + n0 cos(λ1x+ λ2y + λ3t) (13)
with

φ2 = ξ1x+ ξ2y + ξ3t+ ξ4, ψ2 = ξ5x+ ξ6y + ξ7t+ ξ8,

where ξα (1 6 α 6 9), λα (1 6 α 6 3) all are specific parameters to be examined.
Substituting Eq. (13) into Eq. (3) and collecting the powers of t, x, y and trigonometric
functions, we get the system of equations.

6.1 Set-I

We assume ξ1 = ξ6 = λ3 = 0. Using the obtained system of equations, we get the
reduced system of equations. By solving the reduced system of equations using Maple
we get the values of parameters:

ξ2 =
ξ3λ1
3λ2

, ξ3 = ξ3, ξ4 =
3ξ5ξ8λ

2
2

ξ3λ21
, ξ5 = ξ5, ξ7 = 0,

ξ8 = ξ8, n0 = n0, ξ3 = ξ3, λ1 = λ1, λ2 = λ2,

ξ9 =
−9βξ23ξ28λ41λ42 − 81βξ25ξ

2
8λ

8
2 + 2βξ43λ

6
1 − 54ξ23ξ

2
8λ

2
1λ

4
2

9βξ23λ
4
1λ

4
2

.

Using the derived parametric values in Eq. (13) along with Eq. (2), we get periodic
solution for Eq. (1).

Ω(x, y, t)

= m0 + 2β

(
2ξ5ξ8λ2
λ1

+
ξ23(2yλ

2
1λ

2
2 + 6tλ1λ

3
2)

9λ42
− n0λ2 sin(xλ1 + yλ2)

)
×
(
−6ξ28
βλ21

+
ξ23(6tyλ1λ

3
2 + 9t2λ42 + λ21(2 + y2λ22))

9λ42

+ ξ5

(
ξ5x

2 + 2ξ8

(
x+

λ2(yλ1 + 3tλ2)

λ21

)
+ n0 cos(xλ1 + yλ2)

))−1
, (14)

where Ω represents the periodic solution of Eq. (1).
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(a) t = −8 (b) t = 0 (c) t = 10

Figure 13. The 3-D plots for Ω(x, y, t) in Eq. (14) are presented with the following values of parameters:
λ1 = 10, λ2 = 2, n0 = 20, ξ3 = 4, ξ8 = 5, ξ5 = 0.7, m0 = −0.5, β = 9 in interval −100 6 x 6 100
and −10 6 y 6 10.

(a) t = −8 (b) t = 0 (c) t = 10

Figure 14. The 2-D plots for Ω(x, y, t) in Eq. (14) are presented with the following parametric values: λ1 =
10, λ2 = 2, n0 = 20, ξ3 = 4, ξ8 = 5, ξ5 = 0.7, m0 = −0.5, β = 9.

(a) t = −8 (b) t = 0 (c) t = 10

Figure 15. The contour plots for Ω(x, y, t) in Eq. (14) are presented with the following values of parameters:
λ1 = 10, λ2 = 2, n0 = 20, ξ3 = 4, ξ8 = 5, ξ5 = 0.7, m0 = −0.5, β = 9 in interval −100 6 x 6 100
and −10 6 y 6 10.

6.2 Set-II

We consider ξ1 = ξ6 = λ3 = 0. Using the obtained system of equations, we get the
reduced system of equations. By solving reduced system of equations using Maple we get
the values of parameters:

ξ1 = ξ6 = λ3 = 0, ξ2 = 0, ξ3 = ıξ7,

ξ4 =
−ıξ8(βξ5λ22 − λ7)

ξ7
, ξ5 = ξ5, λ2 = λ2, ξ7 = ξ7, ξ8 = ξ8,
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ξ9 =
βξ5λ

2
2ξ

2
8(βξ5λ

2
2 − 2ξ7)

ξ27
, n0 = n0, λ1 = λ1.

With the help of obtained parametric values in Eq. (13) along with Eq. (2), we find
periodic solution for Eq. (1).

Ω(x, y, t) = m0 − 2βn0λ2 sin(xλ1 + yλ2)

×
(
(ξ8 + ξ7t+ ξ5x)

2 +
βξ5ξ

2
8λ

2
2(−2ξ7 + βξ5λ

2
2)

ξ27

+

(
ıξ7t−

ıξ8(−ξ7 + βξ5λ
2
2)

ξ7

)2
+ n0 cos(xλ1 + yλ2)

)−1
,

where Ω specify the periodic solution of Eq. (1).

7 Multi-waves

For multiwaves, we use given transformation [29]

ρ = ψ1 cosh(φ1) + ψ2 cos(φ2) + ψ3 cosh(φ3) + ρ0, (15)
where

ψ1 = ξ1x+ ξ2y + ξ3t+ ξ4, ψ2 = ξ5x+ ξ6y + ξ7t+ ξ8,

ψ3 = ξ9x+ ξ10y + ξ11t+ ξ12.

However, ξα (1 6 α 6 12) are real valued parameters, which we will find. Now we insert
Eq. (15) into Eq. (3) and we identify the coefficients of x, y, t and trigonometric functions
to be zero. We gather system of equations after resolving the system of equations in
Maple. We collect different values of involved parameters.

7.1 Set-I

We assume ξ1 = ξ6 = 0. Then with the help of assumed parameters, we get remaining
values:

ξ1 = 0, ξ6 = 0, ξ10 =
1

6
, ξ11 = ξ11, ξ12 = ξ12, ξ3 =

(108ξ22 + 1)
√
36

216
√

1/β
,

ξ4 = ξ4, ξ5 = ξ5, ξ7 = ξ7, ξ8 = ξ8, ξ2 = ξ2, ξ9 =

√
36
√
1/β

36ξ2
.

Using the above parametric values in Eq. (15), then in Eq. (2), we get multiwave solution
for Eq. (1).

Ω(x, y, t) = m0 + 2β

(
1

6
ψ3 sinh

(
ξ12 + ξ11t+ ξ9x+

y

6

)

+

√
1

β
ψ1 sinh

(
ξ4 +

√
1
β (3 + ξ29β)t

36ξ29
+

√
1
β y

6ξ9

))
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×
(
ρ0 + ψ cosh

(
ξ12 + ξ11t+ ξ9x+

y

6

)

+ ψ1 cosh

(
ξ4 +

√
1
β (3 + ξ29β)t

36ξ29
+

√
1
β y

6ξ9

))−1
, (16)

where Ω represents the multiwave solution of Eq. (1).

(a) t = −5 (b) t = 0 (c) t = 5

Figure 16. The 3-D plots for Ω(x, y, t) in Eq. (16) are presented with the following values of parameters:
ψ3 = 28, ρ0 = −8, ψ1 = −4, ξ9 = 5, ξ11 = 1, ξ4 = 20, ξ2 = −1, ξ12 = 25, m0 = 0.5, β = −3.9 in
interval −5 6 x, y 6 5.

(a) t = −5 (b) t = 0 (c) t = 5

Figure 17. The 2-D plots for Ω(x, y, t) in Eq. (16) are presented with the following parametric values: ψ3 =
28, ρ0 = −8, ψ1 = −4, ξ9 = 5, ξ11 = 1, ξ4 = 20, ξ2 = −1, ξ12 = 25, m0 = 0.5, β = −3.9.

(a) t = −5 (b) t = 0 (c) t = 5

Figure 18. The contour plots for Ω(x, y, t) in Eq. (16) are presented with the following values of parameters:
ψ3 = 28, ρ0 = −8, ψ1 = −4, ξ9 = 5, ξ11 = 1, ξ4 = 20, ξ2 = −1, ξ12 = 25, m0 = 0.5, β = −3.9 in
interval −5 6 x, y 6 5.
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7.2 Set-II

We consider ξ1 = ξ6 = 0. By using these parametric values we get values of other
parameters:

ξ10 =
1

6
, ξ11 = ξ11, ξ12 = ξ12, ξ2 = 6

√
3

√
36ξ3
√
β + β

β(1296ξ23 − b)
ξ3

36ξ3
√
β+β

β(1296ξ23−β)+3

,

ξ3 = ξ3, ξ4 = ξ4, ξ5 = ξ5, ξ7 = ξ7, ξ8 = ξ8,

ξ9 =
√
3

√
36ξ3
√
β + β

β(1296ξ23 − β)
, ψ1 = ψ1, ψ2 = 0, ψ3 = ψ3.

Using derived parametric values in Eq. (15) along with Eq. (2), we get multiwave solution
for Eq. (1).

Ω(x, y, t) = m0 + 2β

(
1

6
ψ3 sinh

(
ξ12 + ξ11t+

√
3

√
36ξ3
√
β + β

(1296ξ23 − β)β
x+

y

6

)

+
6
√
3
√

36ξ3
√
β+β

(1296ξ23−β)β
ψ1 sinh(ξ4 + ξ3t+ 6

√
3
√

36ξ3
√
β+β

(1296ξ23−β)β
y)

3 + 3(36ξ3
√
β+β)

1296ξ23−β

)

×
(
ρ0 + ψ3 cosh

(
ξ12 + ξ11t+

√
3

√
36ξ3
√
β + β

(1296ξ23 − β)β
x+

y

6

)

+ ψ1 cosh

(
ξ4 + ξ3t+

6
√
3
√

36ξ3
√
β+β

(1296ξ23−β)β
y

3 + 3(36ξ3
√
β+β)

1296ξ23−β

))−1
,

where Ω indicates the multiwave solution of Eq.(1).

8 Interaction between lump, periodic and lump with I-kink

We use bilinear form given in Eq. (3) along with following transformation [28]:

ρ = φ2 + ψ2 + ξ9 + b1 cos(λ1x+ λ2y + λ3t) + b2e
λ4x+λ5y+λ6t, (17)

where
φ = ξ1x+ ξ2y + ξ3t+ ξ4, ψ2 = ξ5x+ ξ6y + ξ7t+ ξ8.

However, ξα (1 6 α 6 9) and λα (1 6 α 6 6) are real valued parameters, which
we will find. Now we insert Eq. (17) into Eq. (3) and identify the coefficients of x,
y, t, exponential function and trigonometric functions to be zero. We gather system of
equations after resolving the system of equations in Maple, we collect different values of
parameters involved.
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8.1 Set-I

We assume that ξ1 = ξ7 = ξ8 = λ2 = 0. Then with the help of assumed parameters, we
get other values:

λ1 = λ1, λ3 = 0, λ4 = λ4, ξ2 = Iξ6,

ξ3 =
−2Iξ6(βλ4 + λ25 + λ6)

λ5
, ξ9 = ξ9,

b2 = b2, ξ4 = 0, b1 = b1, ξ6 = ξ6,

ξ5 =
2ξ6(βλ

2
1λ

2
5 + βλ24β

2
5 − λ24λ26 + λ4λ6 + 3λ25)

λ5 + λ6
.

Using the above parametric values in Eq. (17) with Eq. (2), we get multiwave solution for
Eq. (1).

Ω(x, y, t)

= m0 + 2β

(
λ5e

λ6t+λ4x+λ5yb2 + 2ıξ6

(
−2ı(βλ4λ25 + λ6)ξ6t

λ5
+ ıξ6y

)
+

2(3λ25 + βλ21λ
2
5 + βλ24λ

2
5 + λ4λ6 − λ24λ26)ξ6x

λ5λ6
+ ξ6y

)
×
(
ξ9 + eλ6t+λ4x+λ5yb2

(
−2ı(βλ4λ25 + λ6)ξ6t

λ5
+ ıξ6y

)2
+

2(3λ25 + βλ21λ
2
5 + βλ24λ

2
5 + λ4λ6 − λ24λ26)ξ6x

λ5λ6
+ ξ6

+ b1 cos(λ1x)

)−1
, (18)

where Ω indicates the interaction between lump, periodic and lump with I-kink solution
of Eq. (1).

(a) t = 7 (b) t = 17 (c) t = 27

Figure 19. The 3-D plots for Ω(x, y, t) in Eq. (18) are presented with the following values of parameters:
λ6 = −8, λ4 = 8, λ5 = 10, λ1 = −25, λ2 = 20, ξ6 = −5, ξ9 = 1, b1 = 7, b2 = −1, m0 = −4, β = 3
in interval −5 6 x 6 5 and −2 6 y 6 2.
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(a) t = 7 (b) t = 17 (c) t = 27

Figure 20. The 2-D plots for Ω(x, y, t) in Eq. (18) are presented with the following parametric values: λ6 =
−8, λ4 = 8, λ5 = 10, λ1 = −25, λ2 = 20, ξ6 = −5, ξ9 = 1, b1 = 7, b2 = −1, m0 = −4, β = 3.

(a) t = 7 (b) t = 17 (c) t = 27

Figure 21. The contour plots for Ω(x, y, t) in Eq. (18) are presented with the following values of parameters:
λ6 = −8, λ4 = 8, λ5 = 10, λ1 = −25, λ2 = 20, ξ6 = −5, ξ9 = 1, b1 = 7, b2 = −1, m0 = −4, β = 3
in interval −5 6 x 6 5 and −2 6 y 6 2.

8.2 Set-II

We consider ξ1 = ξ7 = ξ8 = λ2 = 0. Using assumed parametric values and using the
obtained system of equations, we get reduced system of equations. By solving reduced
system of equations using Maple we get the values of parameters:

λ1 =

√
(−λ5(β2λ34λ

4
5 − βλ34λ25λ26 + 2βλ24λ

2
5λ

2
6 + 3βλ4λ45 − λ24λ36 + λ4λ26 + 3λ25λ6))

βλ4λ25 + 2βλ6
,

λ3 = 0, λ4 = λ4, ξ2 = ξ2,

ξ3 =
−2ξ2(βλ4λ25 + λ6)

λ5
, ξ4 = 0, ξ5 =

2(βλ24λ
2
5 − λ24λ26 + λ4λ6 + 3λ25)ξ6
(βλ4λ25 + 2λ6)λ5

,

ξ6 = ξ6, ξ9 = ξ9, b1 = b1, b2 = b2.

Using the above parametric values in Eq. (17) along with Eq. (2), we get multiwave
solution for Eq. (1).

Ω(x, y, t) = m0 + 2β

(
λ5e

λ6t+λ4x+λ5ym2 + 2ξ2
−2(βλ4λ25 + λ6)ξ2t

λ5
+ ξ3y
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+ 2ξ6

(
2(3λ25 + βλ24λ

2
5 + λ4λ6 − λ24λ26)ξ6x

λ5(βλ4λ25 + 2λ6)
+ ξ6y

))
×
(
ξ9 + eλ6t+λ4x+λ5ym2 +

(
−2(βλ4λ25 + λ6)ξ2t

λ5
+ ξ3y

)2
+

(
2(3λ25 + βλ24λ

2
5 + λ4λ6 − λ24λ26)ξ6x

λ5(βλ4λ25 + 2λ6)
+ ξ6y

)2
+m1 cosC

)−1
,

where

C =

√
−3βλ4λ45 − β2λ34λ

4
5 − 3λ25λ6 − 2βλ24λ

2
5λ6 − λ4λ26 + βλ34λ

2
5λ

2
6 + λ24λ

3
6

λ5(β2λ4λ25 + 2βλ6)
x,

and Ω represents the interaction between lump, periodic and lump with I-kink solution of
Eq. (1).

9 Results and discussions

A comprehensive comparison between earlier literature with our accomplished outcomes
is discussed in this section. Several researchers worked on various techniques for com-
puting soliton solutions for our governing model. Particularly, Pavlov [26] constructed
Benny-type moment chains, Santini [25] presented inverse scattering problem for Pavlov
equation, Baran et al. [5] derived symmetry reduction, Grinevich [12] et al. worked
on cauchy problem for Pavlov equation, Baran et al [6] applied Lax representation to
symmetry reductions, Wu [33] utilized Newtonian iteration approach. Moreover, Moro-
zov [16] used conservation laws. Here in this presented work, we computed the lump
solution, lump with I-kink, lump with II-kink, periodic solution, multiwave, rogue wave,
interaction between lump and periodic and lump with I-kink for Pavlov equation using
ansatz transformation.

These solutions have significant importance in various fields of sciences for instance,
chemistry biology, mathematical physics, oceanographic engineering, capillary flow, fi-
nance and nonlinear optics. To demonstrate the variety of obtained solutions distinctly,
different parametric values are used. The desired solutions have been presented graph-
ically via 3-D and contour plots, and we observe how our derived results reshape with
arbitrary values of t. In Fig. 1(a), we can see that Ω is maximum at some point, Fig. 1(b)
presents 3-D plots of Ω discussing bright dark lump, Fig. 1(c) shows the corresponding
contour plots for lump solution. Figure 4 shows lump with I-kink when t = −10, t = 0
and t = 10. Contour plots of lump with I-link are presented in Fig. 6. In Fig. 7, we can
clearly see lump with II-kink wave. In case of rogue wave when t = −2, Fig. 10(a) shows
two bright lumps. When t increases, lump waves steadily come closer to each other, and
after interaction, they become a single stilton. Contour plots of the rogue wave shown in
Fig. 12. Figure 13 shows the periodic wave for solution Eq. (14). In Fig. 16, 3-D plot
of multiwave solution for Eq. (16) presented with arbitrary values of t. Figure 19 shows
bright dark lump, Figs. 19(b) and 19(c) show bright and dark lumps, respectively.
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10 Conclusion

The motivation of the presented article is to cumulate the lump solutions, lump with I-
kink, lump with II- kink, periodic solutions, multiwave, rogue wave, interaction between
lump periodic and I-kink and interaction between lump for Pavlov equation by ansatz
transformation and through explaining applicable transformations. We have fortunately
produced some modish exact solutions for the related model. The 3-D and contour
graphs plotted with the distinct numeric values to examine the physical response of the
system. For finer understanding and consideration we have also discussed the geometry
of the graphs. The achieved solutions exhibit that the suggested method is well founded,
definitive and straightforward. Therefore, the proposed scheme could be expanded for
advanced nonlinear models in mathematical physics.
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11. O.F. Gözükızıl, S. Akçağil, The tanh-coth method for some nonlinear pseudoparabolic
equations with exact solutions, Adv. Difference Equ., 2013:143, 2013, https://doi.org/
10.1186/1687-1847-2013-143.

12. G. Grinevich, P.M. Santini, D. Wu, The Cauchy problem for the Pavlov equation, Nonlinearity,
28(11):3709, 2015, https://doi.org/10.1088/0951-7715/28/11/3709.

13. B. Guo, H. Dong, Y. Fang, Lump solutions and interaction solutions for the dimensionally
reduced nonlinear evolution equation, Complexity, 2019:5765061, 2019, https://doi.
org/10.1155/2019/5765061.

14. K. Imai, K. Nozaki, Lump solutions of the Ishimori-II equation, Prog. Theor. Phys., 96(3):521–
526, 1996, https://doi.org/10.1143/PTP.96.521.

15. S. Kumar, M. Kumar, D. Kumar, Computational soliton solutions to (2 + 1)-dimensional
Pavlov equation using Lie symmetry approach, Pramana – J. Phys., 94:28, 2020, https:
//doi.org/10.1007/s12043-019-1894-0.

16. A. Lelito, O.I. Morozov, Three-component nonlocal conservation laws for Lax-integrable 3D
partial differential equations, J. Geom. Phys., 131:89–100, 2018, https://doi.org/10.
1016/j.geomphys.2018.05.004.

17. J.G. Liu, Lump-type solutions and interaction solutions for the (2+1)-dimensional generalized
fifth-order KdV equation, Appl. Math. Lett., 86:36–41, 2018, https://doi.org/10.
1016/j.aml.2018.06.011.

18. W.-X. Ma, Nonlocal integrable mKdV equations by two nonlocal reductions and their
soliton solutions, J. Geom. Phys., 177:104522, 2022, https://doi.org/10.1016/
j.geomphys.2022.104522.

19. W.-X. Ma, Riemann–Hilbert problems and inverse scattering of nonlocal real reverse-
spacetime matrix AKNS hierarchies, Physica D, 430:133078, 2022, https://doi.org/
10.1016/j.physd.2021.133078.

20. W.-X. Ma, Riemann–Hilbert problems and soliton solutions of nonlocal reverse-time
NLS hierarchies, Acta Math. Sci., 42:127–140, 2022, https://doi.org/10.1007/
s10473-022-0106-z.

21. W.-X. Ma, Riemann–Hilbert problems and soliton Solutions of type (λ,−λ∗) reduced nonlocal
integrable mKdV hierarchies, Mathematics, 10(6):870, 2022, https://doi.org/10.
3390/math10060870.

22. W.-X. Ma, Type(−λ,−λ∗) reduced nonlocal integrable mKdV equations and their soliton
solutions, Appl. Math. Lett, 131:108074, 2022, https://doi.org/10.1016/j.aml.
2022.108074.

23. W.X. Ma, Lump solutions to the Kadomtsev–Petviashvili equation, Phys. Lett. A, 379(36):
1975–1978, 2015, https://doi.org/10.1016/j.physleta.2015.06.061.

24. W.X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear
forms, J. Differ. Equations, 264:2633–2659, 2018, https://doi.org/10.1016/j.
jde.2017.10.033.

Nonlinear Anal. Model. Control, 28(2):264–287, 2023

https://doi.org/10.1016/j.camwa.2011.10.015
https://doi.org/10.1016/j.camwa.2011.10.015
https://doi.org/10.1186/1687-1847-2013-143
https://doi.org/10.1186/1687-1847-2013-143
https://doi.org/10.1088/0951-7715/28/11/3709
https://doi.org/10.1155/2019/5765061
https://doi.org/10.1155/2019/5765061
https://doi.org/10.1143/PTP.96.521
https://doi.org/10.1007/s12043-019-1894-0
https://doi.org/10.1007/s12043-019-1894-0
https://doi.org/10.1016/j.geomphys.2018.05.004
https://doi.org/10.1016/j.geomphys.2018.05.004
https://doi.org/10.1016/j.aml.2018.06.011
https://doi.org/10.1016/j.aml.2018.06.011
https://doi.org/10.1016/j.geomphys.2022.104522
https://doi.org/10.1016/j.geomphys.2022.104522
https://doi.org/10.1016/j.physd.2021.133078
https://doi.org/10.1016/j.physd.2021.133078
https://doi.org/10.1007/s10473-022-0106-z
https://doi.org/10.1007/s10473-022-0106-z
https://doi.org/10.3390/math10060870
https://doi.org/10.3390/math10060870
https://doi.org/10.1016/j.aml.2022.108074
https://doi.org/10.1016/j.aml.2022.108074
https://doi.org/10.1016/j.physleta.2015.06.061
https://doi.org/10.1016/j.jde.2017.10.033
https://doi.org/10.1016/j.jde.2017.10.033
https://doi.org/10.15388/namc.2023.28.31449


286 T. Batool et al.

25. S.V. Manakov, P.M. Santini, On the solutions of the second heavenly and Pavlov equations,
J. Phys. A, Math. Theor., 42:404013, 2009, https://doi.org/10.1088/1751-8113/
42/40/404013.

26. M.V. Pavlov, Integrable hydrodynamic chains, J. Math. Phys., 44:4134, 2003, https:
//doi.org/10.1063/1.1597946.

27. N. Raza, A.R. Seadawy, M. Kaplan, A.R. Butt, Symbolic computation and sensitivity analysis
of nonlinear Kudryashov’s dynamical equation with applications, Phys Scr., 96:105216, 2021,
https://doi.org/10.1088/1402-4896/ac0f93.

28. B. Ren, J. Lin, Z.M. Lou, A new nonlinear equation with lump-Soliton, lump periodic, and
lump periodic soliton solutions, Complexity, 2019:4072754, 2019, https://doi.org/
10.1155/2019/4072754.

29. S.T.R. Rizvi, A.R. Seadawy, T. Batool, M.A. Ashraf, Homoclinic breaters, mulitwave,
periodic cross-kink and periodic cross-rational solutions for improved perturbed nonlinear
Schrödinger’s with quadratic-cubic nonlinearity, Chaos Solitons Fractals, 161:112353, 2022,
https://doi.org/10.1016/j.chaos.2022.112353.

30. A.R. Seadawy, H.M. Ahmed, W.B. Rabie, A. Biswas, An alternate pathway to solitons
in magneto-optic waveguides with triple-power law nonlinearity, Optik, 231:166480, 2021,
https://doi.org/10.1016/j.ijleo.2021.166480.

31. A.R. Seadawy, K. El-Rashidy, Application of the extension exponential rational function
method for higher-dimensional Broer–Kaup–Kupershmidt dynamical system, Mod. Phys.
Lett. A, 35(1):1950345, 2020, https://doi.org/10.1142/S0217732319503450.

32. B.H. Wang, P.H. Lu, C.Q. Dai, Y.X. Chen, Vector optical soliton and periodic solutions of
a coupled fractional nonlinear Schrödinger equation, Results Phys., 17:103036, 2020, https:
//doi.org/10.1016/j.rinp.2020.103036.

33. D. Wu, The Cauchy problem for the Pavlov equation with large data, J. Differ. Equations,
263(3):1874–1906, 2017, https://doi.org/10.1016/j.jde.2017.03.033.

34. X.W. Yan, S.F. Tian, M.J. Dong, Backlund transformation, rogue wave solutions and
interaction phenomena for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq
equation, Nonlinear Dyn., 92(2):709–720, 2018, https://doi.org/10.1007/
s11071-018-4085-5.

35. H. Yilmaz, Exact solutions of the Gerdjikov–Ivanov equation using Darboux transformations,
J. Nonlinear Math. Phys., 22:32–46, 2015, https://doi.org/10.1080/14029251.
2015.996438.

36. U. Younas, M. Younis, A.R. Seadawy, S.T.R. Rizvi, S. Althobaiti, S. Sayed, Diverse
exact solutions for modified nonlinear Schrödinger equation with conformable fractional
derivative, Results Phys., 20:103766, 2021, https://doi.org/10.1016/j.rinp.
2020.103766.

37. J.B. Zhang, W.X. Ma, Mixed lump-kink solutions to the BKP equation, Comput. Math. Appl.,
74:591–596, 2017, https://doi.org/10.1016/j.camwa.2017.05.010.

38. X. Zhang, Y. Chen, Rogue wave and a pair of resonance stripe solitons to a reduced (3 + 1)-
dimensional Jimbo–Miwa equation, Commun. Nonlinear Sci. Numer. Simul., 52:24–31, 2017,
https://doi.org/10.1016/j.cnsns.2017.03.021.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1088/1751-8113/42/40/404013
https://doi.org/10.1088/1751-8113/42/40/404013
https://doi.org/10.1063/1.1597946
https://doi.org/10.1063/1.1597946
https://doi.org/10.1088/1402-4896/ac0f93
https://doi.org/10.1155/2019/4072754
https://doi.org/10.1155/2019/4072754
https://doi.org/10.1016/j.chaos.2022.112353
https://doi.org/10.1016/j.ijleo.2021.166480
https://doi.org/10.1142/S0217732319503450
https://doi.org/10.1016/j.rinp.2020.103036
https://doi.org/10.1016/j.rinp.2020.103036
https://doi.org/10.1016/j.jde.2017.03.033
https://doi.org/10.1007/s11071-018-4085-5
https://doi.org/10.1007/s11071-018-4085-5
https://doi.org/10.1080/14029251.2015.996438
https://doi.org/10.1080/14029251.2015.996438
https://doi.org/10.1016/j.rinp.2020.103766
https://doi.org/10.1016/j.rinp.2020.103766
https://doi.org/10.1016/j.camwa.2017.05.010
https://doi.org/10.1016/j.cnsns.2017.03.021
https://www.journals.vu.lt/nonlinear-analysis


Multiple lump solutions and their interactions for an integrable nonlinear dispersionless PDE 287

39. Z. Zhao, Y. Chen, B. Han, Lump soliton, mixed lump stripe and periodic lump solutions of
a (2 + 1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation, Mod. Phys. Lett. B,
31:1750157, 2017, https://doi.org/10.1142/S0217984917501573.

40. Y. Zhou, S. Manukure, W. Ma, Lump and lump-soliton solutions to the Hirota–Satsuma–Ito
equation, Commun. Nonlinear Sci. Numer. Simul., 68:56–62, 2019, https://doi.org/
10.1016/j.cnsns.2018.07.038.

Nonlinear Anal. Model. Control, 28(2):264–287, 2023

https://doi.org/10.1142/S0217984917501573
https://doi.org/10.1016/j.cnsns.2018.07.038
https://doi.org/10.1016/j.cnsns.2018.07.038
https://doi.org/10.15388/namc.2023.28.31449

	Introduction
	Lump solitons
	Set-I
	Set-II

	Lump with I-kink
	Set-I
	Set-II

	Lump with II-kink
	Set-I
	Set-II

	Rouge waves
	Set-I
	Set-II

	Periodic waves
	Set-I
	Set-II

	Multi-waves
	Set-I
	Set-II

	Interaction between lump, periodic and lump with I-kink
	Set-I
	Set-II

	Results and discussions
	Conclusion
	References

