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Abstract. The existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential in-
clusions via almost sectorial operators is the topic of our paper. The researchers used fractional
calculus, stochastic analysis theory, and Bohnenblust–Karlin’s fixed point theorem for multivalued
maps to support their findings. To begin with, we must establish the existence of a mild solution. In
addition, to show the principle, an application is presented.
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1 Introduction

In 1695, fractional calculus was presented as a major field of mathematics. It happened
approximately simultaneously with the development of classical calculus. Researchers
have discovered that fractional calculus may accurately portray a range of nonlocal phe-
nomena in the fields of natural science and technology, and the notion of fractional
calculus has recently been successfully applied to a variety of sectors. The most common
fields of fractional calculus are rheology, dynamical cycles in identity and heterogeneous
structures, diffusive transport equivalent to dispersion, liquid stream, optics, viscoelastic-
ity, and others. Because diagnostic arrangements can be tough to come by in many fields,
the successful use of fractional systems has prompted many investigators to reconsider
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their mathematical estimation methods. In [8, 23], readers can find some interesting con-
clusions related to fractional dynamical systems and research articles related to fractional
differential systems theory. Recently, Guo et al. [12] investigated the existence and
Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral
functional stochastic differential equation with infinite delay of order 1 < β < 2 by using
the Mönch fixed point theorem.

Throughout the past decade, fractional calculus has been one of the most important
frameworks for analysing brief operations. Such models pique the interests of architects,
scientists, and pure mathematicians alike. The most essential of these models are frac-
tional equations with fractional-order derivatives. Furthermore, academics are focusing
on qualitative behaviours such as fractional dynamical systems, stability, existence, and
controllability in [21]. In practical use, since stochastic fluctuation is unavoidable, we
must investigate deterministic problems for stochastic differential equations [20, 24]. Be-
cause of their applicability in several disciplines of science and engineering, stochastic
differential equations have piqued people’s curiosity. Furthermore, it should be noted that
in nature, even in artificial systems, noise or stochastic discomfort cannot be prohibited.
Stochastic differential systems have sparked interest due to their widespread application
in presenting a wide range of sophisticated dynamical systems in scientific, physical,
and pharmaceutical domains [3, 6, 11]. Differential inclusion tools make it simpler to
investigate dynamical systems with kinematics that are not solely determined by the state
of the system.

Other fractional-order derivatives, such as the RL derivatives and Caputo fractional
derivatives, were started by Hilfer [1, 2, 14, 29]. Furthermore, theoretical simulations
of thermoelasticity in crystal compounds, chemical processing, rheological constitutive
modelling, engineering, and other domains have uncovered the usefulness and appli-
cability of the Hilfer fractional derivative. Gu and Trujillo [10] recently employed a
noncompact measure approach and a fixed point technique to show that there is an integral
solution to the Hilfer fractional derivative evolution problem. To designate the derivative’s
order, he developed the latest variable µ ∈ [0, 1] as well as a fractional variable λ, so that
µ = 0 provides the RL derivative and λ = 1 yields the Caputo derivative. Hilfer frac-
tional calculus [6, 8–11, 13] has been the subject of several articles. Researchers revealed
the existence of the mild solution for Hilfer fractional differential systems via almost
sectorial operators using a fixed point approach in [4, 15, 16]. The authors investigated
the solvability and controllability of differential systems using a fixed point technique
in [17, 27].

A growing number of researchers are advancing fractional existence for fractional cal-
culus using almost sectorial operators. For the system under examination, the investigators
established a new technique for identifying mild solution. Furthermore, the investigators
developed a theory to derive various properties of related semigroups created by almost
sectorial operators using fractional calculus, semigroups, multivalued analysis, a measure
of noncompactness, the Laplace transform, a Wright-type function, and a fixed point
theorem. As examples, we can look at [7, 19, 22, 26, 28, 30, 31]. Furthermore, in [5, 6],
researchers studied fractional differential inclusion papers using Bohnenblust–Karlin’s
fixed point theorem for multivalued maps. Sivasankar and Udhayakumar [25] recently
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used the fixed point approach to investigate the existence of Hilfer fractional stochastic
differential systems via almost sectorial operators. However, to the best of our knowledge,
so far, no work has been reported in the literature about the existence of Hilfer fractional
stochastic Volterra–Fredholm integro-differential inclusions via almost sectorial opera-
tors.

Inspired by the above-mentioned work, this paper aims to fill this gap. The purpose
of this paper is to show the existence of Hilfer fractional stochastic Volterra–Fredholm
integro-differential inclusions via almost sectorial operators of the form

HDλ,µ
0+ y(ρ) ∈ Ay(ρ) + G

(
ρ, y(ρ),

ρ∫
0

f
(
ρ, ν, y(ν)

)
dν,

c∫
0

h
(
ρ, ν, y(ν)

)
dν

)

× dW (ρ)

dρ
, ρ ∈ V ′ = (0, c], (1)

I
(1−λ)(1−µ)
0+ y(0) = y0, (2)

where A is an almost sectorial operator of the analytic semigroup {T (ρ), ρ > 0} on Y .
HDλ,µ

0+ denotes the Hilfer fractional derivative (HFD) of order λ ∈ (0, 1) and type µ ∈
[0, 1], the state y(·) takes the value in a Hilbert space Y with ‖·‖. Let V = [0, c] be the
interval, G : V × Y × Y × Y → 2Y \ {∅} is a bounded, nonempty, convex closed
multivalued map, and f, h : V × V × Y → Y are the appropriate functions. For clarity,
we take

(Fy)(ρ) =

ρ∫
0

f
(
ρ, ν, y(ν)

)
dν,

(Hy)(ρ) =

c∫
0

h
(
ρ, ν, y(ν)

)
dν.

The structure of the article is divided into the following: In Section 2, we cover the
principles of fractional calculus, sectorial operators, and multivalued maps. In Section 3,
we present the existence of the mild solution. We provide an application in Section 4 to
highlight our main concepts. Lastly, there are some conclusions to be drawn.

2 Preliminaries

We offer the required theorems and results in this section, which will be used throughout
the essay to obtain the new results.

Two real separable Hilbert spaces are represented by (Y, ‖·‖) and (U, ‖·‖). Assume
that (Ω,E ,P) is a complete probability space connected with the proper family of right-
continuous increasing sub σ-algebras {Eρ, ρ ∈ V} satisfying Eρ ⊂ E . LetW = (Wρ)ρ>0

be a Q-Wiener process defined on (Ω,E ,P) with the covariance operator Q such that
Tr(Q) <∞. We suppose that there exists a proper orthonormal system en, n > 1, in U ,
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a bounded sequence of nonnegative real numbers δn such thatQen = δnen, n = 1, 2, . . . ,
and {β̂n} of independent Brownian motions such that

(
W (ρ), e

)
U

=

∞∑
n=1

√
δn(en, e)β̂n(ρ), e ∈ U, ρ > 0.

Assume that L0
2 = L2(Q1/2U, Y ), which stands for the space of all Q-Hilbert–Schmidt

operators φ : Q1/2U → Y with the inner product ‖φ‖2Q = 〈φ, φ〉 = Tr(φQφ), is a Hilbert
space. Consider 0 ∈ %(A), the resolvent set of A, where S(·) is uniformly bounded, i.e.,
‖S(ρ)‖ 6 M , M > 1, and ρ > 0. The fractional-power operator Aη on its domain
D(Aη) may then be determined for η ∈ (0, 1]. In addition, D(Aη) is dense in Y .

The following theorem lists fundamental properties of Aη .

Theorem 1.
(i) Suppose that 0 < η 6 1, corresponding Yη := D(Aη) is a Banach space with
‖y‖η = ‖Aηy‖, y ∈ Yη .

(ii) Suppose 0 < γ < η 6 1, corresponding D(Aη) → D(Aγ), and the embedding
is compact every time that A is compact.

(iii) For all 0 < η 6 1, there exists Cη> 0 such that ‖AηS(ρ)‖ 6 Cη/ρ
η , 0 < ρ 6 c.

The set of all strongly-measurable, square-integrable, Y -valued random variables, de-
noted byL2(Ω, Y ), is a Banach space connected with ‖y(·)‖L2(Ω,Y ) = (E‖y(·,W )‖2)1/2,
where E is defined as E(y) =

∫
Ω
y(W ) dP. An essential subspace of L2(Ω, Y ) is

provided by

L0
2(Ω, Y ) =

{
y ∈ L2(Ω, Y ), y is E0-measurable

}
.

For c > 0, let V = [0, c] and V ′ = (0, c]. Denote C(V, Y ) = C as the Banach space of
all continuous functions from V to Y that satisfies the condition supρ∈V E‖y(ρ)‖2 <∞.
Let

∆ =
{
y ∈ C(V ′, Y ): lim

ρ→0
ρ1−µ+λµ−λϑy(ρ) exists and finite

}
is a Banach space with ‖·‖∆ and ‖y‖∆ = (supρ∈V′ E‖ρ1−µ+λµ−λϑy(ρ)‖2)1/2. Set

Br(V) =
{
u ∈ C: ‖u‖ 6 r

}
and B∆r (V) =

{
y ∈ ∆: ‖y‖Ω 6 r

}
.

Definition 1. (See [22].) For 0 < ϑ < 1, 0 < ω < π/2, we define the group of closed
linear operators Θ−ϑω , the sector Sω = {v ∈ C \ {0}: | arg v| 6 ω}, and the operator
A : D(A) ⊂ Y → Y in such a way that the following holds:

(i) σ(A) ⊆ Sω;
(ii) There exists a constant Mδ such that ‖(vI−A)−1‖ 6 Mδ|v|−ϑ for all ω<δ<π.

Then A ∈ Θ−ϑω is called an almost sectorial operator on Y .

Proposition 1. (See [22].) Let T (ρ) be the compact semigroup, A ∈ Θ−ϑω for 0 < ϑ < 1
and 0 < ω < π/2. Then the following is satisfied:
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(i) T (ρ+ ν) = T (ρ)T (ν) for all ν, ρ ∈ Sπ/2−ω;
(ii) ‖T (ρ)‖L(Y ) 6 κ0ρ

ϑ−1, ρ > 0, where κ0 > 0 be the constant;
(iii) The range R(T (ρ)) of T (ρ), ρ ∈ Sπ/2−ω , is contained in D(A∞). Particularly,

R(T (ρ)) ⊂ D(Aθ) for all θ ∈ C with Re(θ) > 0,

AθT (ρ)y =
1

2πı

∫
Γµ

vθe−ρvR(v;A)y dv for all y ∈ Y,

and hence there exists a constant C ′ = C ′(γ, θ) > 0 such that∥∥AθT (ρ)
∥∥
L(Y )

6 C ′ρ−γ−Re(θ)−1 for all ρ > 0;

(iv) If ΣT = {y ∈ Y : limρ→0+ T (ρ)y = y}, then D(Aθ) ⊂ ΣT if θ > 1 + ϑ;
(v) (vI −A)−1 =

∫∞
0

e−vνT (ν) dν, v ∈ C and Re(v) > 0.

Definition 2. (See [32].) The left-side Riemann–Liouville fractional integral of order λ
with the lower limit c for the function G : [c,∞)→ R is given by

Iλc+G(ν) =
1

Γ(λ)

ρ∫
c

G(ν)

(ρ− ν)1−λ
dν, ρ > 0, λ > 0,

if the right side is point-wise determined on [c,+∞), Γ(·) is the gamma function.

Definition 3. (See [32].) The left-sided Riemann–Liouville fractional derivative of order
λ > 0, m− 1 6 λ < m, m ∈ N, for a function G : [c,+∞)→ R, is given by

LDλ
c+G(ν) =

1

Γ(m− λ)

dm

dρm

ρ∫
c

G(ν)

(ρ− ν)λ+1−m dν, ρ > c,

provided the right-hand side is defined a.e. on (c,∞].

Definition 4. (See [32].) The left-sided Caputo derivative of type of order λ > 0,m−1 6
λ < m, m ∈ N, for a function G : [c,+∞)→ R, is given by

CDλ
c+G(ν) =

1

Γ(m− λ)

ρ∫
c

Gm(ν)

(ρ− ν)λ+1−m dν = Im−ρy+ Gm(ν), ρ > c,

provided the right-hand side is defined a.e. on [c,+∞).

Definition 5. (See [14].) The left-sided HFD of order 0 < λ < 1 and type µ ∈ [0, 1], of
function G : [c,+∞)→ R, is given by

HDλ,µ
c+ G(ν) =

[
I
(1−λ)µ
c+ D

(
I
(1−λ)(1−µ)
c+ G

)]
(ν).
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Remark 1. (See [14].)

(i) If µ = 0, 0 < λ < 1, and c = 0, then the HFD is equivalent to the Riemann–
Liouville fractional derivative:

HDλ,0
0+ G(ν) =

d

dν
I1−λ0+ G(ρ) = LDλ

0+G(ν).

(ii) If µ = 1, 0 < λ < 1, and c = 0, then the HFD is equivalent to the Caputo
fractional derivative:

HDλ,1
0+ G(ν) = I1−λ0+

d

dν
G(ρ) = CDλ

0+G(ν).

Definition 6. (See [31].) Define the Wright function Wλ(β) by

Wλ(β) =
∑
n∈N

(−β)n−1

Γ(1− λn)(n− 1)!
, β ∈ C,

with the following property:
∞∫
0

θιWλ(θ) dθ =
Γ(1 + ι)

Γ(1 + λι)
, for ι > 0.

Definition 7. (See [29].) G is said to be upper semicontinuous (u.s.c.) on Y if for any
y0 ∈ Y , the set G(y0) is a nonempty, closed subset of Y , and if for each open set V of Y
containing G(y0), there exists an open neighbourhood V of y0 such that G(V) ⊆ V .

If a multivalued map G is completely continuous with nonempty compact values, then
G is upper semicontinuous iff G has a closed graph i.e., ymGy0, zm → z0, zn ∈ G(yn)
imply z0 ∈ G(y0).

Lemma 1. (See [10].) The differential system (1)–(2) is equivalent to an integral inclu-
sions presented as

y(ρ) ∈ y0
Γ(µ(1−λ)+λ)

ρ(1−λ)(µ−1) +
1

Γ(λ)

ρ∫
0

(ρ−ν)λ−1
[
Ay(ν) dν+g(ν) dW (ν)

]
.

Lemma 2. (See [10].) Let y(ρ) be a solution of the integral inclusions given in Lemma 1,
then y(ρ) satisfies

y(ρ) = Sλ,µ(ρ)y0 +

ρ∫
0

Kλ(ρ− ν)g(ν) dW (ν), ρ ∈ V ′,

where

Sλ,µ(ρ) = I
µ(1−λ)
0 Kλ(ρ), Kλ(ρ) = ρλ−1Qλ(ρ),

and

Q(ρ) =

∞∫
0

λθW (θ)T
(
ρλθ
)

dθ.
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Definition 8. An Eρ-adpapted stochastic process y(ρ) ∈ C(V ′, Y ) is called a mild solu-
tion of the Cauchy problem (1)–(2) if I(1−λ)(1−µ)0 y(0) = y0, y0 ∈ L0

2(Ω, Y ), there exists
g ∈ L2(Ω, Y ) such that g(ρ) ∈ G(ρ, y(ρ)) on ρ ∈ V ′, and

y(ρ) = Sλ,µ(ρ)y0 +

ρ∫
0

Kλ(ρ− ν)g(ν) dW (ν), ρ ∈ V ′,

where

(Fy)(ν) =

ν∫
0

f
(
ν, w, y(w)

)
dw, (Hy)(ν) =

c∫
0

h
(
ν, w, y(w)

)
dw.

Lemma 3. (See [31].) If T (ρ)ρ>0 is a compact operator, then Sλ,µ(ρ)ρ>0 andQλ(ρ)ρ>0

are also compact operators.

Lemma 4. (See [31].) Let θ > 1− ϑ. For all y ∈ D(Aθ), we have

lim
ρ→0+

Q(ρ)y =
y

Γ(λ)
.

Lemma 5. (See [31].) Assume that T (ρ)ρ>0 is a compact operator. Then T (ρ)ρ>0 is
equicontinuous.

Lemma 6. (See [31].) For each fixed ρ > 0, Qλ(ρ), Kλ(ρ), and Sλ,µ(ρ) are linear
operators, and for any y ∈ Y ,∥∥Qλ(ρ)y

∥∥ 6 κpρ
λ(ϑ−1)‖y‖,

∥∥Kλ(ρ)y
∥∥ 6 κpρ

λϑ−1‖y‖,

and ∥∥Sλ,µ(ρ)y
∥∥ 6 κsρ

−1+µ−λµ+λϑ‖y‖,
where

κp =
κ0Γ(ϑ)

Γ(λϑ)
, κs =

κ0Γ(ϑ)

Γ(µ(1− λ) + λϑ)
.

Lemma 7. (See [31].) Assume that {T (ρ)}ρ>0 is equicontinuous. Then {Qλ(ρ)}ρ>0,
{Kλ(ρ)}ρ>0, and {Sλ,µ}ρ>0 are strongly continuous, that is, for any y ∈ Y and ρ′′ >
ρ′ > 0, ∥∥Qλ(ρ′)y −Qλ(ρ′′)y

∥∥→ 0,
∥∥Kλ(ρ′)y −Kλ(ρ′′)y

∥∥→ 0,∥∥Sλ,µ(ρ′)y − Sλ,µ(ρ′′)y
∥∥→ 0 as ρ′′ → ρ′.

Theorem 2. (See [32].) Sλ(ρ) and Qλ(ρ) are continuous in the uniform operator topol-
ogy, for ρ > 0, for any c > 0, the continuity is uniform on [c,∞).

Lemma 8. (See [18].) Suppose BCC(Y ) be the set of all nonempty, bounded, closed,
and convex subset of Y , V be a compact real interval. Let G be the L2-Caratheodory
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multivalued map, and G : V × Y × Y × Y → BCC(Y ) be measurable to ρ for any fixed
y ∈ Y , u.s.c. to y for every ρ ∈ V , and for all y ∈ C, the set

SG,y =
{
g ∈ L2

(
V, L(U, Y )

)
: g(ρ) ∈ G

(
ρ, y(ρ), (Fy)(ρ), (Hy)(ρ)

)
, ρ ∈ V

}
be nonempty. Let Γ be the linear continuous function from L2(V, Y ) to C, then

Γ ◦ SG : C → BCC(C), y → (Γ ◦ SG)(y) = Γ (SG,y),

is closed graph operator in C × C.

Lemma 9 [Bohnenblust-Karlins fixed point theorem]. (See [5].) Suppose that Y be
a closed, bounded, and convex subset Y of y. Assume that D : Y → 2Y \ {∅} is upper
semicontinuous with closed, convex values such that D(Y ) ⊂ Y and D(Y ) is compact.
Then D has a fixed point.

3 Existence of mild solution

We require the following hypotheses:

(H1) The operator {T (ρ), ρ > 0} is compact.
(H2) The map G : V × Y × Y × Y → BCC(Y ) is measurable to ρ for any fixed

y ∈ Y , u.s.c. to y for all ρ ∈ V and for any y ∈ C, the set

SG,y =
{
g ∈ L1(V, Y ): g(ρ) ∈ G

(
ρ, y(ρ), (Fy)(ρ), (Hy)(ρ)

)
, ρ ∈ V

}
is nonempty.

(H3) For ρ ∈ V , G(ρ, ·, ·, ·) : Y × Y × Y → Y , f(ρ, ν, ·), h(ρ, ν, ·) : Y → Y are
continuous functions, and for each y ∈ C, G(·, y, (Fy), (Hy)) : V → V and
f(·, ·, y), h(·, ·, y) : V × V → Y are strongly measurable.

(H4) For r > 0, y ∈ C along with ‖y‖C 6 r and LG,r(ρ) ∈ L1(V,R+) satisfying
limρ→0+ ρ

1−µ+λµ−λϑIλϑ0+LG,r(ρ) = 0,

sup
{
E‖g‖2: g(ρ) ∈ G

(
ρ, y(ρ), (Fy)(ρ), (Hy)(ρ)

)}
6 LG,r(ρ)

for a.e. ρ ∈ V .
(H5) The function ν → (ρ− ν)2(λϑ−1)LG,r(ν) ∈ L1(V,R+), and there exists a con-

stant γ > 0 such that

lim
r→∞

inf

∫ ρ
0

(ρ− ν)2(λϑ−1)LG,r(ν) dν

r
= γ <∞.

Theorem 3. Assume that hypotheses (H1)–(H5) hold. Then the Hilfer fractional stochas-
tic system (1)–(2) has a mild solution on V , provided

2 Tr(Q)κ2pc
2(1−µ+λµ−λϑ)γ < 1

and y0 ∈ D(Aθ) with θ > 1 + ϑ.
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Proof. We define the multivalued operator Σ : C → 2C by

Σ
(
y(ρ)

)
=

{
y ∈ C: z(ρ) = ρ1−µ+λµ−λϑ

[
Sλ,µ(ρ)y0

+

ρ∫
0

(ρ− ν)λ−1Qλ(ρ− ν)g(ν) dW (ν)

]
, ρ ∈ (0, c]

}
,

and we prove that Σ has a fixed point.

Step 1. Σ(y) is convex for all y ∈ C.
Suppose z1, z2 ∈ C and g1, g2 ∈ SG,y , ρ ∈ V . We know

zi(ρ) = ρ1−µ+λµ−λϑ

[
Sλ,µ(ρ)y0 +

ρ∫
0

(ρ−ν)λ−1Qλ(ρ−ν)gi(ν) dW (ν)

]
, i = 1, 2.

Let 0 6 χ 6 1, then for each of ρ ∈ V , we obtain

χz1 + (1− χ)z2(ρ)

= ρ1−µ+λµ−λϑSλ,µ(ρ)y0

+ ρ1−µ+λµ−λϑ
ρ∫

0

(ρ− ν)λ−1Qλ(ρ− ν)
[
χg1(ν) + (1− χ)g2(ν)

]
dW (ν).

Since SG,y is convex, χg1 + (1− χ)g2 ∈ SG,y .
Therefore,

χz1 + (1− χ)z2 ∈ Σy(ρ),

hence Σ is convex.

Step 2. On the space C, consider Br = {y ∈ C: ‖y‖2C 6 r} for r > 0. Clearly, Br
is bounded, closed, and convex set of C. Now we prove that there exists r > 0 such that
Σ(Br) ⊆ Br.

If not, then for all r > 0, there exists yr ∈ Br, but Σ(yr) /∈ Br, i.e.,∥∥Σ(yr)∥∥C ≡ sup
{∥∥zr∥∥C : zr ∈ (Σyr)} > r,

and

zr(ρ) = ρ1−µ+λµ−λϑ

[
Sλ,µ(ρ)y0 +

ρ∫
0

(ρ− ν)λ−1Qλ(ρ− ν)gr(ν) dW (ν)

]

for some gr ∈ SG,yr ,

https://www.journals.vu.lt/nonlinear-analysis
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r 6 E
∥∥(Σyr)(ρ)

∥∥2
6 E

∥∥∥∥∥ρ1−µ+λµ−λϑ
[
Sλ,µ(ρ)y0 +

ρ∫
0

(ρ− ν)λ−1Qλ(ρ− ν)gr(ν) dW (ν)

]∥∥∥∥∥
2

6 2E
∥∥ρ1−µ+λµ−λϑSλ,µ(ρ)y0

∥∥2
+ 2E

∥∥∥∥∥ρ1−µ+λµ−λϑ
ρ∫

0

(ρ− ν)λ−1Qλ(ρ− ν)gr(ν) dW (ν)

∥∥∥∥∥
2

6 2 sup
ρ∈V

ρ2(1−µ+λµ−λϑ)
[
κ2sρ
−2+2µ−2λµ+2λϑ‖y0‖2

]
+ 2 Tr(Q) sup

ρ∈V
ρ2(1−µ+λµ−λϑ)

ρ∫
0

κ2p(ρ− ν)2(λϑ−1)E
∥∥gr(ν)

∥∥2 dν

6 2 sup
ρ∈V

ρ2(1−µ+λµ−λϑ)κ2sρ
−2+2µ−2λµ+2λϑ‖y0‖2

+ 2 Tr(Q) sup
ρ∈V

ρ2(1−µ+λµ−λϑ)κ2p

ρ∫
0

(ρ− ν)2(λϑ−1)LG,r(ν) dν.

Dividing both sides by r and taking r →∞, we obtain that

2 Tr(Q)κ2pc
2(1−µ+λµ−λϑ)γ > 1,

which is a contradiction to our assumption. Thus for δ > 0, there exists r > 0 and some
g ∈ SG,y, Σ(Br) ⊂ Br.

Step 3. Σ maps bounded sets into equicontinuous sets of C.
For any z ∈ Σ(y) and y ∈ Br, there exists G ∈ SG,y . We define

z(ρ) = ρ1−µ+λµ−λϑ

[
Sλ,µ(ρ)y0 +

ρ∫
0

(ρ− ν)λ−1Qλ(ρ− ν)g(ν) dW (ν)

]
.

Let 0 < ρ1 < ρ2 6 c.

E
∥∥z(ρ2)− z(ρ1)

∥∥2
6 E

∥∥∥∥∥ρ1−µ+λµ−λϑ2

(
Sλ,µ(ρ2)y0 +

ρ2∫
0

(ρ2 − ν)λ−1Qλ(ρ2 − ν)g(ν) dW (ν)

)

− ρ1−µ+λµ−λϑ1

(
Sλ,µ(ρ1)y0 +

ρ1∫
0

(ρ1 − ν)λ−1Qλ(ρ1 − ν)g(ν) dW (ν)

)∥∥∥∥∥
2
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6 2E
∥∥[ρ1−µ+λµ−λϑ2 Sλ,µ(ρ2)− ρ1−µ+λµ−λϑ1 Sλ,µ(ρ1)

]
y0
∥∥2

+ 2E

∥∥∥∥∥ρ1−µ+λµ−λϑ2

ρ1∫
0

(ρ2 − ν)λ−1Qλ(ρ2 − ν)g(ν) dW (ν)

+ ρ1−µ+λµ−λϑ2

ρ2∫
ρ1

(ρ2 − ν)λ−1Qλ(ρ2 − ν)g(ν) dW (ν)

− ρ1−µ+λµ−λϑ1

ρ1∫
0

(ρ1 − ν)λ−1Qλ(ρ1 − ν)g(ν) dW (ν)

∥∥∥∥∥
2

6 2E
∥∥[ρ1−µ+λµ−λϑ2 Sλ,µ(ρ2)− ρ1−µ+λµ−λϑ1 Sλ,µ(ρ1)

]
y0
∥∥2

+ 6E

∥∥∥∥ρ1−µ+λµ−λϑ2

ρ2∫
ρ1

(ρ2 − ν)λ−1Qλ(ρ2 − ν)g(ν) dW (ν)

∥∥∥∥∥
2

+ 6E

∥∥∥∥∥ρ1−µ+λµ−λϑ2

ρ1∫
0

(ρ2 − ν)λ−1Qλ(ρ2 − ν)g(ν) dW (ν)

− ρ1−µ+λµ−λϑ1

ρ1∫
0

(ρ1 − ν)λ−1Qλ(ρ2 − ν)g(ν) dW (ν)

∥∥∥∥∥
2

+ 6E

∥∥∥∥∥ρ1−µ+λµ−λϑ1

ρ1∫
0

(ρ1 − ν)λ−1Qλ(ρ2 − ν)g(ν) dW (ν)

− ρ1−µ+λµ−λϑ1

ρ1∫
0

(ρ1 − ν)λ−1Qλ(ρ1 − ν)g(ν) dW (ν)

∥∥∥∥∥
2

= I1 + I2 + I3 + I4.

By the strong continuity of Sλ,µ(ρ)y0 we get I1 → 0 as ρ2 → ρ1. Also,

I2 = 6E

∥∥∥∥∥ρ1−µ+λµ−λϑ2

ρ2∫
ρ1

(ρ2 − ν)λ−1Qλ(ρ2 − ν)g(ν) dW (ν)

∥∥∥∥∥
2

6 6 Tr(Q)ρ
2(1−µ+λµ−λϑ)
2

ρ2∫
ρ1

(ρ2 − ν)−2λ−2
∥∥Qλ(ρ2 − ν)

∥∥2E∥∥g(ν)
∥∥2 dν

6 6 Tr(Q)ρ
2(1−µ+λµ−λϑ)
2

ρ2∫
ρ1

(ρ2 − ν)2λ−2κ2p(ρ2 − ν)−2λ(1−ϑ)LG,r(ν) dν

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


On the existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions 299

6 6 Tr(Q)ρ
2(1−µ+λµ−λϑ)
2 κ2p

ρ2∫
ρ1

(ρ2 − ν)2(λϑ−1)LG,r(ν) dν

6 6 Tr(Q)κ2p

[
ρ
2(1−µ+λµ−λϑ)
2

ρ2∫
0

(ρ2 − ν)2(λϑ−1)LG,r(ν) dν

− ρ2(1+λϑ)(1−µ)1

ρ1∫
0

(ρ1 − ν)2(λϑ−1)LG,r(ν) dν

]

+ 6 Tr(Q)κ2p

ρ1∫
0

[
ρ
2(1−µ+λµ−λϑ)
1 (ρ1−ν)2(λϑ−1)−ρ2(1−µ+λµ−λϑ)2 (ρ2−ν)2(λϑ−1)

]
× LG,r(ν) dν.

We get I2 → 0 as ρ2 → ρ1 by using (H4) and the Lebesgue dominated convergent
theorem.

I3 = 6E

∥∥∥∥∥ρ1−µ+λµ−λϑ2

ρ1∫
0

(ρ2 − ν)λ−1Qλ(ρ2 − ν)g(ν) dW (ν)

− ρ1−µ+λµ−λϑ1

ρ1∫
0

(ρ1 − ν)λ−1Qλ(ρ2 − ν)g(ν) dW (ν)

∥∥∥∥∥
2

6 6E

∥∥∥∥∥
ρ1∫
0

[
ρ1−µ+λµ−λϑ2 (ρ2 − ν)λ−1 − ρ1−µ+λµ−λϑ1 (ρ1 − ν)λ−1

]
×Qλ(ρ2 − ν)g(ν) dW (ν)

∥∥∥∥∥
2

6 6 Tr(Q)

ρ1∫
0

E
∥∥ρ1−µ+λµ−λϑ2 (ρ2 − ν)λ−1 − ρ1−µ+λµ−λϑ1 (ρ1 − ν)λ−1

∥∥2
×
∥∥Qλ(ρ2 − ν)

∥∥2E∥∥g(ν)
∥∥2 dν

6 6 Tr(Q)κ2p

ρ1∫
0

(ρ2 − ν)−2λ(1−ϑ)E
∥∥ρ1−µ+λµ−λϑ2 (ρ2 − ν)(λ−1)

− ρ1−µ+λµ−λϑ1 (ρ1 − ν)(λ−1)
∥∥2LG,r(ν) dν.

Consider

(ρ2 − ν)−2λ(1−ϑ)

×E
∥∥ρ1−µ+λµ−λϑ2 (ρ2 − ν)(λ−1) − ρ1−µ+λµ−λϑ1 (ρ1 − ν)(λ−1)

∥∥2LG,r(ν)
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6
[
2ρ

2(1−µ+λµ−λϑ)
2 (ρ2 − ν)2(λϑ−1)

+ 2ρ
2(1−µ+λµ−λϑ)
1 (ρ1 − ν)2(λ−1)(ρ2 − ν)−2λ(1−ϑ)

]
LG,r(ν)

6
[
2ρ

2(1−µ+λµ−λϑ)
2 (ρ2 − ν)2(λϑ−1) + 2ρ

2(1−µ+λµ−λϑ)
1 (ρ1 − ν)2(λϑ−1)

]
LG,r(ν)

6 4ρ
2(1−µ+λµ−λϑ)
1 (ρ1 − ν)2(λϑ−1)LG,r(ν)

and
ρ1∫
0

4ρ
2(1−µ+λµ−λϑ)
1 (ρ1 − ν)2(λϑ−1)LG,r(ν) dν

existing for ν ∈ (0, ρ1]. Then by Lebesgue’s dominated convergence theorem we obtain
ρ1∫
0

(ρ2 − ν)−2λ(1−ϑ)E
∥∥ρ1−µ+λµ−λϑ2 (ρ2 − ν)λ−1 − ρ1−µ+λµ−λϑ1 (ρ1 − ν)λ−1

∥∥2
× LG,r(ν) dν → 0 as ρ2 → ρ1,

so, we conclude limρ2→ρ1 I3 = 0. For any ε > 0, we have

I4 6 6E

∥∥∥∥∥
ρ1∫
0

ρ1−µ+λµ−λϑ1

[
Qλ(ρ2 − ν)−Qλ(ρ1 − ν)

]
(ρ1 − ν)λ−1g(ν) dW (ν)

∥∥∥∥∥
6 6 Tr(Q)

ρ1∫
0

ρ
2(1−µ+λµ−λϑ)
1

∥∥Qλ(ρ2 − ν)−Qλ(ρ1 − ν)
∥∥2(ρ1 − ν)2λ−2

×E
∥∥g(ν)

∥∥2 dν

6 6 Tr(Q)

ρ1∫
0

ρ
2(1−µ+λµ−λϑ)
1

∥∥Qλ(ρ2 − ν)−Qλ(ρ1 − ν)
∥∥2(ρ1 − ν)2λ−2

LG,r(ν) dν

6 6 Tr(Q)

{ ρ1−ε∫
0

ρ
2(1−µ+λµ−λϑ)
1

∥∥Qλ(ρ2 − ν)−Qλ(ρ1 − ν)
∥∥2(ρ1 − ν)2(λ−1)

× LG,r(ν) dν

+

ρ1∫
ρ1−ε

ρ
2(1−µ+λµ−λϑ)
1

∥∥Qλ(ρ2 − ν)−Qλ(ρ1 − ν)
∥∥2(ρ1 − ν)2(λ−1)LG,r(ν) dν

}

6 6 Tr(Q)

{
ρ
2(1−µ+λµ−λϑ)
1

ρ1−ε∫
0

(ρ1 − ν)2(λ−1)LG,r(ν) dν

× sup
ν∈[0,ρ1−ε]

∥∥Qλ(ρ2 − ν)−Qλ(ρ1 − ν)
∥∥2

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


On the existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions 301

+ κ2p

ρ1∫
ρ1−ε

ρ
2(1−µ+λµ−λϑ)
1

[
(ρ2 − ν)−2λ(1−ϑ) + (ρ1 − ν)−2λ(1−ϑ)

]
× (ρ1 − ν)2(λ−1)LG,r(ν) dν

}

6 6 Tr(Q)

{
ρ
2(1−µ+λµ−λϑ)+2λ(1−ϑ)
1

ρ1∫
0

(ρ1 − ν)2(λϑ−1)LG,r(ν) dν

× sup
ν∈[0,ρ1−ε]

∥∥Qλ(ρ2 − ν)−Qλ(ρ1 − ν)
∥∥2

+ 4κ2p

ρ1∫
ρ1−ε

ρ
2(1−µ+λµ−λϑ)
1 (ρ1 − ν)2(λϑ−1)LG,r(ν) dν.

From Theorem 2 and limρ2→ρ1 I2 = 0 we get I4 → 0 independently of y ∈ C as ρ2 → ρ1,
ε → 0. Hence ‖z(ρ2) − z(ρ1)‖ → 0 independently of y ∈ C as ρ2 → ρ1. This implies
that {Σy(ρ): y ∈ C} is equicontinuous on V .

Step 4. Π(ρ) = {z(ρ) : z ∈ Σ(Br)} is relatively compact for ρ ∈ V .
For ε ∈ (0, ρ) and η > 0, consider the operator z′(ρ) on Br by

z′ε,η(ρ) = ρ1−µ+λµ−λϑSλ,µ(ρ)y0

+ ρ1−µ+λµ−λϑ
ρ−ε∫
0

(ρ− ν)λ−1Qλ(ρ− ν)g(ν) dW (ν)

= ρ1−µ+λµ−λϑSλ,µ(ρ)y0

+ λρ1−µ+λµ−λϑ
ρ−ε∫
0

∞∫
η

θMλ(θ)(ρ− ν)λ−1T
(
(ρ− ν)λθ

)
g(ν) dθ dW (ν)

= ρ1−µ+λµ−λϑSλ,µ(ρ)y0 + λρ1−µ+λµ−λϑT
(
ελη
)

×
ρ−ε∫
0

∞∫
η

θMλ(θ)(ρ− ν)λ−1T
(
(ρ− ν)λθ − ελη

)
g(ν) dθ dW (ν).

Hence Πε,η(ρ) = {z′ε,η(ρ): y ∈ Br} is precompact in Y for all 0 < ε < ρ and η > 0

due to the compactness of T (ελq). For any y ∈ Br, we get

E
∥∥z(ρ)− z′ε,η(ρ)

∥∥2
6 E

∥∥∥∥∥ρ1−µ+λµ−λϑSλ,µy0 + ρ1−µ+λµ−λϑ
ρ∫

0

(ρ− ν)λ−1Q(ρ− ν)g(ν) dW (ν)
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−

[
ρ1−µ+λµ−λϑSλ,µy0 + λρ1−µ+λµ−λϑT

(
ελη
)

×
ρ−ε∫
0

∞∫
η

θMλ(θ)(ρ− ν)λ−1T
(
(ρ− ν)λθ − ελη

)
g(ν) dθ dW (ν)

]∥∥∥∥∥
2

6 2E

∥∥∥∥∥λρ1−µ+λµ−λϑ
ρ∫

0

η∫
0

θMλ(θ)(ρ− ν)λ−1T
(
(ρ− ν)λθ

)
g(ν) dθ dW (ν)

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥λρ1−µ+λµ−λϑ
ρ∫

ρ−ε

∞∫
η

(ρ− ν)λ−1θMλ(θ)T
(
(ρ− ν)λθ

)
g(ν) dθ dW (ν)

∥∥∥∥∥
2

6 2 Tr(Q)λρ2(1−µ+λµ−λϑ)

×
ρ∫

0

η∫
0

θ2M2
λ(θ)(ρ− ν)2(λ−1)

∥∥T ((ρ− ν)λθ
)∥∥2E∥∥g(ν)

∥∥2 dθ dν

+ 2 Tr(Q)λρ2(1−µ+λµ−λϑ)

×
ρ∫

ρ−ε

∞∫
η

(ρ− ν)2(λ−1)θ2M2
λ(θ)

∥∥T ((ρ− ν)λθ
)∥∥2E∥∥g(ν)

∥∥2 dθ dν

6 2 Tr(Q)λκ0ρ
2(1+λϑ)(1−µ)

×
ρ∫

0

η∫
0

θ2M2
λ(θ)(ρ− ν)2(λ−1)(ρ− ν)−2λ(1−ϑ)θ2ϑ−2LG,r(ν) dθ dν

+ 2 Tr(Q)λκ0ρ
2(1−µ+λµ−λϑ)

×
ρ∫

ρ−ε

∞∫
η

(ρ− ν)2(λ−1)θ2M2
λ(θ)(ρ− ν)−2λ(1−ϑ)θ2ϑ−2LG,r(ν) dν

6 2 Tr(Q)λκ0ρ
2(1−µ+λµ−λϑ)

ρ∫
0

(ρ− ν)2(λϑ−1)LG,r(ν) dν

η∫
0

θ2ϑMλ(θ) dθ

+ 2 Tr(Q)λκ0ρ
2(1−µ+λµ−λϑ)

ρ∫
ρ−ε

(ρ− ν)2(λϑ−1)LG,r(ν) dν

∞∫
0

θ2ϑM2
λ(θ) dθ

6 2 Tr(Q)λκ0ρ
2(1−µ+λµ−λϑ)

ρ∫
0

(ρ− ν)−2(1+λϑ)LG,r(ν) dν

η∫
0

θ2ϑM2
λ(θ) dθ
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+ 2 Tr(Q)λκ0
Γ(1 + 2ϑ)

Γ(1 + 2λϑ)
ρ2(1−µ+λµ−λϑ)

ρ∫
ρ−ε

(ρ− ν)2(λϑ−1)LG,r(ν) dν

→ 0 as ε→ 0, η → 0.

So, Πε,η(ρ) = {z′ε,η(ρ), ρ ∈ V} are arbitrary closed to Π(ρ) = {z(ρ), ρ ∈ V}. As
a result of the Arzela–Ascoli theorem, {z(ρ), ρ ∈ V} is relatively compact. As a result,
z(ρ) is a completely continuous operator due to the continuity of z(ρ) and relatively
compactness of {z(ρ), ρ ∈ V}.

Step 5. Σ has a closed graph.
Let yn→ y0 as n→∞, zn(ρ) ∈Σ(yn) and zn→ z0 as n→∞. We need to prove

that z0 ∈ Σ(y0). Since zn ∈ Σ(yn), then there exists a function gn ∈ SG,yn such that

zn(ρ) = ρ1−µ+λµ−λϑ

[
Sλ,µ(ρ)y0 +

ρ∫
0

(ρ− ν)λ−1Qλ(ρ− ν)gn(ν) dW (ν)

]
.

We have to show that there exists g0 ∈ SG,y0 such that

z0(ρ) = ρ1−µ+λµ−λϑ

[
Sλ,µ(ρ)y0 +

ρ∫
0

(ρ− ν)λ−1Qλ(ρ− ν)g0(ν) dW (ν)

]
.

Clearly, as n→∞,∥∥(zn(ρ)− ρ1−µ+λµ−λϑSλ,µ(ρ)y0
)
−
(
z0(ρ)− ρ1−µ+λµ−λϑSλ,µ(ρ)y0

)∥∥→ 0.

Now, we consider an operator Γ : L2(V, Y )→ C(V, Y ),

Γ (g)(ρ) =

ρ∫
0

(ρ− ν)λ−1Qλ(ρ− ν)g(ν) dW (ν).

By Lemma 8 Γ ◦ SG,y is a closed graph operator. So, by comparing with Γ we have(
zn(ρ)− ρ1−µ+λµ−λϑSλ,µ(ρ)y0

)
∈ Γ (SG,yn).

Since gn → g0, it follows from Lemma 8 that(
z0(ρ)− ρ1−µ+λµ−λϑSλ,µ(ρ)y0

)
∈ Γ (SG,y0).

Hence, Σ is a closed graph.
As a result of applying Arzela–Ascoli theorem on Steps 1–5, Σ is a u.s.c. multivalued

mapping because it is a completely continuous multivalued mapping with compact value.
As a result of Lemma 9, Σ has a fixed point z(·) on Br(·), and z(·) is the mild solution
of (1)–(2).
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4 Example

As an example of how our findings can be put to use, think about the following: HF
stochastic Volterra–Fredholm integro-differential inclusions

D
4/7,µ
0+ w(ρ, τ) ∈ wρρ(ρ, τ) + Ḡ

(
ρ, w(ρ, τ), (Fw)(ρ, τ), (Hw)(ρ, τ)

)
× dW (ρ)

dρ
, ρ ∈ (0, c], τ ∈ [0, π],

w(ρ, 0) = w(ρ, π) = 0, ρ ∈ [0, c],

I(1−4/7)(1−µ)w(0, τ) = w0(τ), τ ∈ [0, π],

(3)

where D4/7,µ
0+ is the HFD of order 4/7 and type µ, I(1−4/7)(1−µ) is the RL integral of

order (3/7)(1−µ), Ḡ(ρ, w(ρ, τ), (Ew)(ρ, τ), (Hw)(ρ, τ)), (Fw)(ρ, τ), and (Hw)(ρ, τ)
are the given functions.

LetW (ρ) be a one-dimensional standard Brownian motion in Y defined on the filtered
probability space (Ω,E,P), and Y = L2[0, π] with the norm ‖·‖Y to write system (3) in
the abstract form of (1)–(2). Define the operator A, D(A) ⊂ Y × Y , by Aw = wρρ with
the domain

D(A) =
{
w ∈ Y : wρ, wρρ ∈ Y, w(ρ, 0) = w(ρ, π) = 0

}
.

Then

Aw =

∞∑
n=1

n2〈w, en〉en, w ∈ D(A),

where en(w) =
√

2/π sin(nτ), n = 1, 2, . . . , is the orthogonal set of eigenvectors of A.
It can be easily shown that A is an almost sectorial operators of an analytic semigroup
T (ρ), ρ > 0, in Y and is presented as

T (ρ)w =

∞∑
n=1

e−n
2ρ〈w, en〉en, w ∈ Y,

and satisfies hypothesis (H1). There are constants δ, ε > 0 as a result of the work in [22]
such that (A + δ) ∈ Θπ/2−1π/2−ε (Y ). The compactness of the semigroup T (ρ) follows from
[32, Lemma 4.66].

y(ρ)(τ) = w(ρ, τ), ρ ∈ V = [0, c], τ ∈ [0, π]. Now for any y ∈ Y = L2[0, π],
τ ∈ [0, π], we define the function G : V × Y × Y × Y → Y ,

G
(
ρ, y(ρ), (Fy)(ρ), (Hy)(ρ)

)
= Ḡ

(
ρ, w(ρ, τ), (Fw)(ρ, τ), (Hw)(ρ, τ)

)
=

e−ρ

1 + e−ρ
sin

(
w(ρ, τ) +

ρ∫
0

sin(ρs)w(s, τ) ds+

c∫
0

cos(ρs)w(s, τ) ds

)
,
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where

(Fy)(ρ)(τ) =

ρ∫
0

f
(
ρ, s, w(s, τ)

)
ds =

ρ∫
0

sin(ρs)w(s, τ) ds,

(Hy)(ρ)(τ) =

c∫
0

h
(
ρ, s, w(s, τ)

)
ds =

c∫
0

cos(ρs)w(s, τ) ds.

As a result, the nonlocal Cauchy problem (1)–(2) can be restated as the fractional sys-
tem (3). Obviously, Ḡ(ρ, w(ρ, τ), (Fw)(ρ, τ), (Hw)(ρ, τ)) is uniformly bounded. Then
hypotheses (H1)–(H5) are fulfilled. The problem has a mild solution on V according to
Theorem 3.

Remark. Now, to discuss the existence of Hilfer fractional stochastic Volterra–Fredholm
integro-differential inclusions via almost sectorial operators, we have to use the frac-
tional calculus, stochastic analysis theory, multivalued maps, Brownian motions, and
Bohnenblust–Karlin’s fixed point theorem. Then we extended the proposed systems with
the impulsive effects and nonlocal conditions. In the future, we will use the fixed point
theorem to examine the approximate controllability and Hyers–Ulam stability of Hilfer
fractional stochastic evolution Volterra–Fredholm integro-differential systems with im-
pulses.

Conclusion. The existence of Hilfer fractional stochastic Volterra–Fredholm integro-
differential inclusions via almost sectorial operators was the focus of our article. The
major conclusions are established by applying the concepts and ideas from fractional
calculus, stochastic analysis theory, and the fixed point approach. We first established
the existence of mild solutions to the fractional system under consideration. Finally, we
exemplify the theory using an example.

Acknowledgment. The authors are grateful to the reviewers of this article who gave
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