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Abstract. We consider the quasilinear dynamic equation in a Banach space on unbounded above
and below time scales T with rd-continuous, regressive right-hand side. We define the corresponding
Green-type map. Using the integral functional technique, we find a new simpler, but at the same
time, more general sufficient condition for the existence of a bounded solution on the time scales
expressed in terms of integrals of the Green-type map. We construct previously unknown linear
scalar differential equation, which does not possess exponentially dichotomy, but for which the
integral of the corresponding Green-type map is uniformly bounded. The existence of such example
allows, on the one hand, to obtain the new sufficient condition for the existence of bounded solution
and, on the other hand, to prove Hyers–Ulam stability for a much broader class of linear dynamic
equations even in the classical case.

Keywords: dynamic equations on time scales, Green-type map, bounded solution, periodic
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1 Introduction

The following result is known in the theory of dynamical systems as Bohl–Perron-type
theorem; see, for example, [4, 10, 11, 23].

In his dissertation [4] (see also [6, p. 147] and the translation of the dissertation [5,
p. 74]), Bohl studied the problem of the existence of a bounded solution x ∈ Rn for the
quasilinear differential equation

ẋ = Ax+ f(t, x),

where real parts of matrix A eigenvalues are not equal to zero. Bohl proved the theorem
for the cases n = 1 and n = 2. Later, Demidovich proved the theorem in the general
case [12] (see also [13, p. 300]), and he called it the Bohl theorem.
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In our research, we generalize these results, even for Rn, by relaxing conditions on the
linear partA and strengthening conditions on the nonlinear part f . We use Green-type map
and integral functional equation technique [27–29] to substantially simplify the proof.
Furthermore, for more general point of view, we consider dynamic equations on time
scales in arbitrary Banach space. To highlight our improvement comparing to previous
results, we use an example where the linear part of the differential equation even does not
possess a nonuniform exponential dichotomy.

The field of dynamic equations on time scales created by Hilger in 1990 [16,17] is an
emerging area with great potential. This new and compelling area of mathematics is more
general and versatile than the traditional theories of differential and difference equations.
The field of dynamic equations on time scales contains and extends the classical theory of
differential, difference, integral and summation equations as special cases. To understand
the notation in this article, some basic definitions are needed (for details, see [7, 8, 20]).

Many applications lead to the task of finding the conditions under which various types
of quasilinear dynamical systems have a bounded global solution. In fact, the study has
become an important area of research due to the fact that such equations arise in a variety
of real world problems such as in the study of p-Laplace equations, non-Newtonian fluid
theory and the turbulent flow of a polytrophic gas in a porous medium and so [9, 21].

Let us note that the Keller–Segel models arising in mathematical biology idealize
chemotaxis phenomena, and many related variants have been finding interest in the mathe-
matical community. In this regard, in recent articles [14,15,22] and the references therein,
the interested reader can find an extensive and rigorous theory on existence and properties
of global, uniformly bounded or blow-up solutions.

In 1940, at the Mathematics Club of the University of Wisconsin, Ulam [31] raised
the question when a solution of an equation, differing slightly from a given one, must be
somehow near to the exact solution of the given equation. In the following year, Hyers
[18] gave an affirmative answer to the question of Ulam for Cauchy additive functional
equation in a Banach space. So the stability concept proposed by Ulam and Hyers, was
named as Hyers–Ulam stability. Afterwards, Rassias [26] introduced new ideas of Hyers–
Ulam stability using unbounded right-hand side in the involved inequalities, depending
on certain functions, introducing therefore the so-called Hyers–Ulam–Rassias stability.
However, we will use only the term Hyers–Ulam stability in this article.

Hyers–Ulam stability of some linear and nonlinear dynamic equations on time scales
has been studied; see [1,30] and the references therein. The connections between Hyers–
Ulam stability and uniform exponential stability was examined by [2,35]. We derive a new
sufficient condition for the Hyers–Ulam stability of a linear dynamic equation in the case
when the integral of Green-type map is uniformly bounded.

2 Notations and preliminaries

A time scale T is an arbitrary nonempty closed subset of real numbers R. We assume
throughout that a time scale T has the topology that it inherits from the standard topology
on the real numbers R. Since a time scale may or may not be connected, the concept of
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jump operator is useful for describing the structure of the time scale under consideration
and is also used in defining the delta derivative. The forward jump operator σ : T→ T is
defined by the equality

σ(t) = inf{s ∈ T | s > t},

while the backward jump operator ρ : T→ T is defined by the equality

ρ(t) = sup{s ∈ T | s < t}.

In these definitions, we put inf ∅ = supT and sup ∅ = inf T, where ∅ denotes the empty
set. The graininess function µ : T→ [0,+∞) is defined by

µ(t) = σ(t)− t.

The jump operators allow the classification of points in a time scale T. If σ(t) > t, then
the point t ∈ T is called right-scattered, while if ρ(t) < t, then the point t ∈ T is called
left-scattered. If σ(t) = t, then t ∈ T is called right-dense, while if ρ(t) = t, then t ∈ T
is called left-dense. If T has a left-scattered maximum m, then Tκ = T\{m}, otherwise,
set Tκ = T.

Let X be a Banach space. Assume that g : T → X is a map and fix t ∈ Tκ. The
delta derivative (also, Hilger derivative) g∆(t) ∈ X exists if for every ε > 0, there exists
a neighbourhood U = (t− δ, t+ δ) ∩ T for some δ > 0 such that∣∣(g(σ(t))− g(s))− g∆(t)(σ(t)− s)∣∣

6 ε
∣∣σ(t)− s∣∣ for all s ∈ U.

Take T = R and g is differentiable in the ordinary sense at t ∈ T. Then g∆(t) = g′(t) is
the derivative used in standard calculus. Take T = Z. Then g∆(t) = ∆g(t) is the forward
difference operator used in difference equation.

If F∆(t) = g(t), then define the (Cauchy) delta integral by

s∫
r

g(t)∆t = F (s)− F (r) for all r, s ∈ T.

If T = R, then
s∫
r

g(t)∆t =

s∫
r

g(t) dt,

while if T = Z, then

s∫
r

g(t)∆t =

s−1∑
t=r

g(t) for r, s ∈ T and r < s.

A map g : T → X is called rd-continuous, provided it is continuous at right-dense
points in T and its left-sided limits exist at left-dense points in T. A map h : T×X→ X is
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called rd-continuous if g defined by g(t) = h(t, x(t)) is rd-continuous for any continuous
map x : T→ X. A map h is called regressive at t ∈ Tκ if the map

I + µ(t)h(t, ·) : X→ X is invertible

(where I is the identity map), and h is called regressive on Tκ if h is regressive at each
t ∈ Tκ.

The set of all regressive and rd-continuous functions f : T → R will be denoted by
R = R(Tκ,R). The set of functions being both regressive and rd-continuous on time
scales T forms an Abelian group under the addition ⊕ defined by

(p⊕ q)(t) = p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ Tκ,

where p, q ∈ R(Tκ,R), and additive inverse in this group is given by

(	p)(t) = − p(t)

1 + µ(t)p(t)
for all t ∈ Tκ.

3 Bounded solution

Hereinafter, T will be unbounded above and below time scales. Let L(X) be the Banach
space of linear bounded endomorphisms. Let us look closely to the following quasilinear
regressive dynamic equation:

x∆ = A(t)x+ f(t, x), (1)
where:

(i) the map A : T → L(X) is rd-continuous, and the corresponding linear dynamic
equation

x∆ = A(t)x (2)

is regressive;
(ii) the map f : T × X → X is rd-continuous with respect to t for fixed x, and it

satisfies the Lipschitz conditions∣∣f(t, x)− f(t, x′)∣∣ 6 ε(t)|x− x′|,

and in addition, it satisfies the following inequality:∣∣f(t, 0)∣∣ 6 N(t) < +∞,

where N : T→ R+ and ε : T→ R+ are integrable scalar functions.

From conditions (i) and (ii) we obtained that the solutions of (1) are continuable in
the negative direction. Moreover, the solution for initial value problem defined on T is
unique because of Lipschitz condition with respect to x of the right hand.

The solution of dynamic equation (1) is denoted by x(·, s, x) : T → X with initial
condition x(s) = x. So x(s, s, x) = x, and because of uniqueness of solutions, for
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t, τ, s ∈ T, we have
x(t, s, x) = x

(
t, τ, x(τ, s, x)

)
.

For short, we will use the notation x(t) = x(t, s, x).
Local results, which hold under more realistic assumptions on the nonlinearity, can be

deduced using standard bump function techniques.
The exponential operator (transition operator) eA(·, s) : T→ L(X) is solution of the

corresponding operator-valued initial value problem

X∆ = A(t)X, X(s) = I,

where t, s ∈ T, eA(s, s) = I , and I ∈ L(X) is identity operator. Let us note that linear
cocycle property holds for τ, s, t ∈ T:

eA(t, τ)eA(τ, s) = eA(t, s).

The solution of (1) can be represented in the form

x(t, s, x) = eA(t, s)x+

t∫
s

eA
(
t, σ(τ)

)
f
(
τ, x(τ, s, x)

)
∆τ.

Green-type map can be represented in the form

G(t, s) =

{
eA(t, s)P (s) if s 6 t,

eA(t, s)(P (s)− I if t < s,

where P (s) ∈ L(X) is rd-continuous with respect to s ∈ T. Note that the linear dynamic
equation (2) has infinitely many Green-type maps. But if T = R and the linear regressive
dynamic equation (2) has uniform exponential dichotomy, then moreover there exists
a unique Green-type map, which satisfies the inequality∣∣G(t, s)∣∣ 6 K exp

(
−λ|t− s|

)
, K > 1, λ > 0.

Let us formulate sufficient conditions for the existence of bounded solution to the
quasilinear dynamic equation (1). Note that the weak condition of the nonlinear member
and the weak condition of the nonlinear member Lipschitz coefficient play an important
role in the formulation of the theorem.

Theorem 1. Suppose that the linear dynamic equation (2) has an rd-continuous Green-
type map G(s, τ) ∈ L(X) such that

sup
t∈T

+∞∫
−∞

∣∣G(t, σ(τ))∣∣N(τ)∆τ < +∞, (3)

sup
t∈T

+∞∫
−∞

∣∣G(t, σ(τ))∣∣ε(τ)∆τ = q < 1. (4)

Then the quasilinear equation (1) has a bounded solution.
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Proof. Let Crd(T, X) be a set of rd-continuous maps η : T→ X . The set

B =
{
η ∈ Crd(T, X)

∣∣∣ sup
t∈T

∣∣η(t)∣∣ < +∞
}

is Banach space with the supremum norm ‖η‖ = supt∈T |η(t)|. Let us consider the
integro-functional equation on time scales

η(t) =

+∞∫
−∞

G
(
t, σ(τ)

)
f
(
τ, η(τ)

)
∆τ (5)

and the map η 7→ Tη, η ∈ B, defined by the equality

Tη(t) =

+∞∫
−∞

G
(
t, σ(τ)

)
f
(
τ, η(τ)

)
∆τ.

We have

∣∣Tη(t)∣∣ 6 +∞∫
−∞

∣∣G(t, σ(τ))∣∣∣∣f(τ, η(τ))∣∣∆τ
6

+∞∫
−∞

∣∣G(t, σ(τ))∣∣ε(τ)‖η‖∆τ + +∞∫
−∞

∣∣G(t, σ(τ))∣∣∣∣N(τ)
∣∣∆τ

6 q‖η‖+
+∞∫
−∞

∣∣G(t, σ(τ))∣∣∣∣N(τ)
∣∣∆τ.

It follows that Tη ∈ B. Next, we get

∣∣Tη(t)− Tη′(t)
∣∣ = ∣∣∣∣∣

+∞∫
−∞

G
(
s, σ(τ)

)(
f
(
τ, η(τ)

)
− f

(
τ, η′(τ)

))
∆τ

∣∣∣∣∣
6

+∞∫
−∞

∣∣G(s, σ(τ))∣∣ε(τ)∣∣η(τ)− η′(τ)∣∣∆τ
6 sup

t

+∞∫
−∞

∣∣G(s, σ(τ))∣∣ε(τ)∆τ‖η − η′‖
= q‖η − η′‖,

where q < 1. Thus the map T is a contraction, and consequently, the integro-functional
equation (5) has a unique solution in B.
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Next, we will prove that the bounded solution of integro-functional equation (5) is
also the solution of (1).

First, consider the case when s < t. Then

η(t) =

+∞∫
−∞

G
(
t, σ(τ)

)
f
(
τ, η(τ)

)
∆τ

=

t∫
−∞

G
(
t, σ(τ)

)
f
(
τ, η(τ)

)
∆τ +

+∞∫
t

G
(
t, σ(τ)

)
f
(
τ, η(τ)

)
∆τ

=

s∫
−∞

eA(t, s)G
(
s, σ(τ)

)
f
(
τ, η(τ)

)
∆τ +

t∫
s

eA
(
t, σ(τ)

)
P
(
σ(τ)

)
f
(
τ, η(τ)

)
∆τ

+

+∞∫
s

eA(t, s)G
(
s, σ(τ)

)
f
(
τ, η(τ)

)
∆τ

+

s∫
t

eA
(
t, σ(τ)

)(
P
(
σ(τ)

)
− I
)
f
(
τ, η(τ)

)
∆τ

= eA(t, s)

+∞∫
−∞

G
(
s, σ(τ)

)
f
(
τ, η(τ)

)
∆τ +

t∫
s

eA
(
t, σ(τ)

)
f
(
τ, η(τ)

)
∆τ

= eA(t, s)η(s) +

t∫
s

eA
(
t, σ(τ)

)
f
(
τ, η(τ)

)
∆τ.

Analogously, we consider the case when s > t.
The bounded solution η is unique in B, and ‖η‖ = supt∈T |η(t)| < +∞. The theorem

is proved.

Remark 1. Note that conditions (3) and (4) can be simplified if the improper integral of
the Green-type map is uniformly bounded, that is, if

sup
t∈T

+∞∫
−∞

∣∣G(t, σ(τ))∣∣∆τ < +∞. (6)

Condition (6) is satisfied if the linear dynamic equation (2) admits a uniform exponential
dichotomy [10, 11]. In the case T = R, it can be concluded that there exists a projector
P : R→ L(X) such that P 2(s) = P (s) and

eA(t, s)P (s) = P (t)eA(t, s) (7)
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holds, and there exist constants K > 1 and λ > 0 such that∣∣eA(t, s)P (s)∣∣ 6 Ke−λ(t−s) if s 6 t,∣∣eA(t, s)(I − P (s))∣∣ 6 Keλ(t−s) if t 6 s.

Linear dynamic equation (2) is said to have an exponential dichotomy [24, 25, 32, 33, 37,
38, 40] on T if there exists a projector P : T → L(X) such that P 2(s) = P (s) and (7)
holds, and there exist positive constants Ki and λi, i = 1, 2, such that∣∣eA(t, s)P (s)∣∣ 6 K1e	λ1

(t, s) for s 6 t, s, t ∈ T,∣∣eA(t, s)(I − P (s))∣∣ 6 K2e	λ2
(t, s) for t 6 s, s, t ∈ T.

Example 1. We construct the linear scalar differential equation, the solution of which on
the one hand has infinite Lyapunov exponent [10, 11], but on the other hand, integral of
corresponding Green-type map is uniformly bounded. Consider

ẋ = −
(
a′(t)

a(t)
+ a(t)

)
x, a(t) = α+ κ(t), α > 0, κ(t) > 0, (8)

where the function κ : R→ R is sawtooth piecewise linear and satisfies the estimates

+∞∫
−∞

κ(t) dt < +∞, lim sup
t→+∞

ln(κ(t))

t
= +∞.

Then the Cauchy initial value problem x(s) = 1 of equation (8) has solution

x(t, s) = exp

(
−

t∫
s

a(τ) dτ

)
a(s)

a(t)
> 0

with property

lim sup
t→+∞

ln(x(t, s))

t
= −α− lim sup

t→+∞

ln(a(t))

t
= −α− lim sup

t→+∞

ln(κ(t))

t

= −∞.

For example, the function κ : R → R can be taken as follows: κ is piecewise linear
continuous scalar function, κ(−t) = κ(t), and for n ∈ N,

κ(t) =



0 if t ∈ [0, 1/2),

0 if t ∈ [n− 1/2, n− 2−1e−n
2

n−2],

linear if t ∈ (n− 2−1e−n
2

n−2, n),

en
2

if t = n,

linear if t ∈ (n, n+ 2−1e−n
2

n−2),

0 if t ∈ [n+ 2−1e−n
2

n−2, n+ 1/2).
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Figure 1. Sketch of the sawtooth function κ : R → R.

Then
+∞∫
−∞

κ(t) dt = 2

+∞∑
n=1

1

2n2
=
π2

6
< +∞

and

lim sup
t→+∞

ln(κ(t))

t
= lim
n→+∞

ln(κ(n))

n
= lim
n→+∞

n = +∞.

We choose Green-type map

G(t, s) =

{
x(t, s) if s 6 t,

0 if t < s.

Let us note that
+∞∫
−∞

∣∣G(t, s)∣∣ds = t∫
−∞

x(t, s) ds =
1

a(t)
6

1

α
.

If supt,x∈R |f(t, x)| < +∞ and supt∈R ε(t) < α, then corresponding quasilinear
equation (1) has bounded solution although the solutions of the corresponding linear
differential equation has infinite Lyapunov exponent.

We say that the linear differential equation

ẋ = A(t)x, t ∈ [α,+∞) ⊂ R

satisfies the Perron conjecture [13,23] if for every nonhomogeneous differential equation

ẋ = A(t)x+ f(t),

Nonlinear Anal. Model. Control, 28(2):377–391, 2023
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where f : [α,+∞) → Rn is a continuous and bounded map, there exists a bounded
solution x : [α,+∞) → Rn, x(α) = 0, if and only if the corresponding exponential
operator satisfies the inequality∣∣eA(t, s)∣∣ 6 K exp

(
−λ(t− s)

)
, K > 1, λ > 0, α 6 s 6 t.

Example 1 shows that the Peron’s conjecture can be incorrect in the case where the matrix
A is unbounded with respect to t ∈ [α,+∞).

Illustrative Example 2. Let uss look at the case where T = R. Suppose that linear
dynamic equation (2) admits a nonuniform exponential dichotomy [3, 34, 36, 39]. Then
there exists a projector P : T→ L(X), (7) holds, and there exist constants K > 1, λ > 0
and δ > 0 such that ∣∣eA(t, s)P (s)∣∣ 6 Ke−λ(t−s)eδ|s| if s 6 t,∣∣eA(t, s)(I − P (s))∣∣ 6 Keλ(t−s)eδ|s| if t 6 s.

When δ ≡ 0, we obtain the classical notion of uniform exponential dichotomy. If δ ≡ 0
and λ ≡ 0, we obtain a uniform dichotomy.

If N(t) 6 µe−δ|t|, ε(t) 6 re−δ|t| and 2Kr < λ, then dynamic equation (1) in the
case of nonuniform exponential dichotomy has bounded solution [34].

If
∫ +∞
−∞ N(t) < +∞ and

sup
t,s∈R

∣∣G(t, s)∣∣ +∞∫
−∞

ε(t) dt = q < 1,

then dynamic equation (1) in the case of uniform dichotomy has bounded solution [19].

Illustrative Example 3. Let us illustrate Theorem 1. For simplicity, let us consider non-
homogeneous linear differential equation on R

ẋ = A(t)x+ f(t) = − 2t

1 + t2
x− 2te−t

2

1 + t2

with nonuniform dichotomy. In our case the exponential map is

eA(t, s) =
1 + s2

1 + t2
,

and choose the Green-type map in the following form:

G(t, s) =

{
1+s2

1+t2 if s 6 t,

0 if t < s.

It follows that bounded solution is

η(t) = −
t∫

−∞

1 + s2

1 + t2
2se−s

2

1 + s2
ds =

e−t
2

1 + t2
.
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Remark 2. Let the time scale be periodic, that is, if t ∈ T, then t + ω ∈ T, where
ω > 0 is the period of the time scale T. Then the graininess function is also periodic
µ(t) = µ(t+ ω).

Let us consider the quasilinear dynamic equation (1) where the right-hand side is
periodic with period ω > 0, consequently,A(t+ω) = A(t) and f(t+ω, x) = f(t, x). We
obtain that exponential map satisfies equality eA(t+ω, s+ω) = eA(t, s). If P (s+ω) =
P (s), it follows that G(t+ ω, s+ w) = G(t, s).

It is important to note that

η(t+ ω) =

+∞∫
−∞

G
(
t+ ω, σ(τ)

)
f
(
τ, η(τ)

)
∆τ

=

+∞∫
−∞

G
(
t+ ω, σ(r + ω)

)
f
(
r + ω, η(r + ω)

)
∆r

=

+∞∫
−∞

G
(
t, σ(r)

)
f
(
r, η(r + ω)

)
∆r.

Because the integro-functional equation (5) has a unique bounded solution, we get that
unique bounded solution is periodic

η(t+ w) = η(t).

4 Hyers–Ulam stability

Definition 1. We say that linear dynamic equation (2) is Hyers–Ulam stable if there exists
a positive constant C > 0 such that for each real number ε > 0 and for each solution x of
the inequality ∣∣x∆ −A(t)x∣∣ 6 ε,

there exists a solution x0 of the linear dynamic equation (2) with the property

sup
t∈T

∣∣x(t)− x0(t)∣∣ 6 Cε.

We will give a new sufficient condition for the Hyers–Ulam stability of a linear
dynamic equation (2) in the case when the integral of Green-type map is uniformly
bounded. Example 1 shows that there are cases where, on the one hand, the solution
of a linear dynamical system has an infinite Lyapunov exponent, but on the other hand,
the integral from the Green-type map is uniformly bounded.

Nonlinear Anal. Model. Control, 28(2):377–391, 2023

https://doi.org/10.15388/namc.2023.28.31603


388 A. Reinfelds, D. Šteinberga

Theorem 2. Suppose that the linear dynamic equation (2) has a rd-continuous Green-
type map G(s, τ) ∈ L(X) such that

sup
t∈T

+∞∫
−∞

∣∣G(t, σ(τ))∣∣∆τ < +∞.

Then the linear dynamic equation (2) is Hyers–Ulam stable.

Proof. Let
η(t) = x∆ −A(t)x.

Then |η(t)| 6 ε, and general solution of

x∆ = A(t)x+ η(t)

is

x(t) = eA(t, s)C1 +

+∞∫
−∞

G
(
t, σ(τ)

)
η(τ)∆τ.

Let us take
x0(t) = eA(t, s)C1,

where C1 ∈ X. Then

∣∣x(t)− x0(t)∣∣ 6
∣∣∣∣∣

+∞∫
−∞

G
(
t, σ(τ)

)
η(τ)∆τ

∣∣∣∣∣ 6 ε

+∞∫
−∞

∣∣G(t, σ(τ))∣∣∆τ
6 ε sup

t∈T

+∞∫
−∞

∣∣G(t, σ(τ))∣∣∆τ,
where

C = sup
t∈T

+∞∫
−∞

∣∣G(t, σ(τ))∣∣∆τ.
The theorem is proved.
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