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Abstract. In this paper, we study a class of degenerate unperturbed problems. We first investigate
some properties of eigenvalues and eigenfunctions for the strongly degenerate elliptic operator and
then obtain two existence theorems of nontrivial solutions when the nonlinearity is a function with
an asymptotically condition.
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1 Introduction

Our aim in this paper is to study the following nonlinear elliptic equation:

−∆αu− λu = f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1)

where Ω is a smooth bounded domain of RN (N > 2), λ is a parameter, and ∆α is
a strongly degenerate elliptic operator of the form

∆α :=

N∑
i=1

∂xi
(
α2
i ∂xi

)
, α = (α1, . . . , αN ) : RN → RN .
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The strong degenerate elliptic operator ∆α was first introduced in [4], and the authors
[5] remarked that ∆α-Laplacian belong to the more general class of X-elliptic operators.

The ∆α operator contains many degenerate elliptic operators such as the Grushin-
type operator Ga = ∆x + |x|2a∆y , a > 0, where (x, y) denotes the point of RN1 ×RN2 ,
N1 + N2 = N , and the operator of the form Pa,b,c = ∆x + |x|2a∆y + |x|2b|y|2c∆z ,
(x, y, z) ∈ RN1 × RN2 × RN3 , N1 + N2 + N3 = N , where a, b and c are real positive
constants. We refer readers to [1] for some important properties of this operator.

Many authors considered (1) with λ = 0, i.e.,

−∆αu = f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω.

(2)

In [1] the authors used the mountain pass theorem and the fountain theorem to study
the existence and multiplicity of solutions for (2), where f satisfies a superlinear growth
condition, and in [17] the authors examined the case where (2) has a nontrivial solution
using sub-super solutions and variational methods. In [6] the authors adopted the three
critical point theorem to consider the case where (2) has at least two solutions, and in
[3,15] the authors investigated the existence of infinitely many solutions when f satisfies
a general superlinear growth condition. For more research to this kinds of equations, we
also refer the readers to [7–14, 16, 19, 20] and the references therein.

Following [4], we denote by W 1,2
α (Ω) the closure of C1

0 (Ω) with respect to the
norm ‖u‖W 1,2

α (Ω) = (
∫
Ω
|∇αu|2 dx)1/2, which is a Hilbert space with the inner product

〈u, v〉 =
∫
Ω
∇αu · ∇αv dx. Here ∇α = (α1∂x1

u, . . . , αN∂xNu). For convenience, we
abbreviate the norm ‖·‖W 1,2

α (Ω) as ‖·‖, and let |·|q be the usual norm in the Lebesgue
space Lq(Ω).

In order to study the asymptotically linear problem, we first present eigenvalues prop-
erties for ∆α. We note that the author in [6] presented some properties for this operator,
but the author did not provide proofs. For completeness, we first study the eigenvalue
problem associated with (1),

−∆αu = λu, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(3)

where λ ∈ R is the eigenvalue of the problem if there exists u ∈W 1,2
α \ {0} such that (3)

holds. Denote by σ(−∆α) and 0 < λ1 < · · · < λk < · · · the spectrum and the distinct
eigenvalues of −∆α in W 1,2

α (Ω), respectively.
We note that problem (3) is equivalent to∫

Ω

∇αu · ∇αv dx = λ

∫
Ω

uv dx, u, v ∈W 1,2
α . (4)

Theorem 1. Let Ω be an open bounded set of RN . Then the eigenvalues and eigenfunc-
tions of ∆α have the following properties:
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(i) Problem (4) has a positive eigenvalue λ1, and its characteristic is

λ1 = min
|u|2=1

u∈W 1,2
α

∫
Ω

|∇αu|2 dx (5)

or, equivalently,

λ1 = min
u∈W 1,2

α

∫
Ω
|∇αu|2 dx∫
Ω
|u|2 dx

.

(ii) There exists a positive function e1 ∈ W 1,2
α , which is an eigenfunction corre-

sponding to λ1, attaining the minimum in (4), i.e., |e1|2 = 1 and

λ1 =

∫
Ω

|∇αe1|2 dx. (6)

(iii) The first eigenvalue λ1 is simple, i.e., if u ∈ W 1,2
α is a solution of the following

equation ∫
Ω

∇αu · ∇αv dx = λ1

∫
Ω

uv dx ∀v ∈W 1,2
α ,

then u = ξe1 with ξ ∈ R.
(iv) The set of eigenvalues of (4) consists of a sequence {λk}k∈N with

0 < λ1 < λ2 6 · · · 6 λk 6 λk+1 6 · · · (7)

and
λk → +∞ as k → +∞. (8)

Moreover, for any k ∈ N, the eigenvalues can be characterized as follows:

λk+1 = min
|u|2=1u∈Pk+1

∫
Ω

|∇αu|2 dx (9)

or, equivalently,

λk+1 = min
u∈Pk+1\{0}

∫
Ω
|∇αu|2 dx∫
Ω
|u|2 dx

, (10)

where
Pk+1 :=

{
u ∈W 1,2

α s.t. 〈u, ej〉 = 0 ∀j = 1, . . . , k
}
.

(v) For any k ∈ N, there exists a function ek+1 ∈ Pk+1, which is an eigenfunction
corresponding to λk+1, attaining the minimum in (9), i.e., |ek+1|2 = 1 and

λk+1 =

∫
Ω

|∇αu|2 dx. (11)
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(vi) The sequence {ek}k of eigenfunctions corresponding to λk is an orthonormal
basis of L2(Ω) and orthogonal basis of W 1,2

α .
(vii) Each eigenvalue λk has finite multiplicity. More precisely, if λk satisfies

λk−1 < λk = · · · = λk+h < λk+h+1 (12)

for some h ∈ N0, then the set of all the eigenfunctions corresponding to λk agree
with span{ek · · · ek+h}.

Now, on the basis of the above theorem, we study the existence and multiplicity of
solutions for (1). For the nonlinear term f and λ, we consider the following assumptions:

(f 1) f is a Carathéodory function, and sup|t|6r |f(·, t)| ∈ L∞(Ω) for all r > 0.
(f 2) lim|t|→+∞ f(x, t)/t = 0 uniformly with respect to a.e. x ∈ Ω.
(f 3) limt→0 f(x, t)/t = λ0 ∈ R uniformly with respect to a.e. x ∈ Ω.

(λ1) λ /∈ σ(−∆α).
(λ2) (Λ2) There exist h, k ∈ N with k > h such that λ0 + λ < λh 6 λk 6 λ.

We use the saddle point theorem and the pseudoindex theory introduced in [2] to
discuss the existence and multiplicity of solutions for (1). Next, we state the main results:

Theorem 2. Assume that the nonlinearity f(x, u) satisfies (f 1), (f 2) and λ satisfies (λ1).
Then equation (1) has at least a nontrivial weak solution.

Theorem 3. Assume that the nonlinearity f(x, u) satisfies (f 1), (f 2) and (f 3) and λ
satisfies (λ1), (λ2). Then equation (1) has at least k − h + 1 distinct pairs of nontrivial
weak solutions.

Remark 1. Note that we were motivated partly by Theorem 3.1 in [2]. Here the non-
linearity is no longer superlinear, and we use the saddle point theorem to establish the
existence of a solution. Also, we present eigenvalue properties of the operator ∆α.

2 Preliminaries

We recall the functional setting in [3, 4]. Consider the operator of the form ∆α :=∑N
i=1 ∂xi(α

2
i ∂xi), where ∂xi = ∂/∂xi, i = 1, . . . , N . Here the function αi : RN → R

is continuous, strictly positive and of C1 outside the coordinate hyperplane, i.e., αi > 0,
i = 1 . . . N , in RN \Π , where Π = {(x1, . . . , xN ) ∈ RN : ΠN

i=1xi = 0}. As in [4], we
assume that αi satisfy the following properties:

(i) α1(x) ≡ 1, αi(x) = αi(x1, . . . , xi−1), i = 1, . . . , N .
(ii) For every x ∈ RN , αi(x) = αi(x

∗), i = 1, . . . , N , where x∗ = (|x1|, . . . , |xN |)
if x = (x1, . . . , xN ).

(iii) There exists a constant ρ > 0 such that 0 6 xk∂xkαi(x) 6 ραi(x) for all
k ∈ {1, . . . , i − 1}, i = 2, . . . , N , and for every x ∈ RN+ := {(x1, . . . , xN ) ∈
RN : xi > 0 ∀i = 1, . . . , N}.
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(iv) There exists a group of dilations {δt}t>0, δt : RN → RN , δt(x) = δt(x1, . . . ,
xN ) = (tε1x1, . . . , t

εNxN ), where 1 6 ε1 6 ε2 6 · · · 6 εN such that αi is
δt-homogeneous of degree εi − 1, i.e., αi(δt(x)) = tεi−1α(x) for all x ∈ RN ,
t > 0, i = 1, . . . , N . This implies that the operation ∆α is δt-homogeneous of
degree two, i.e., ∆α(u(δt(x))) = t2(∆αu)(δt(x)) for all u ∈ C∞(RN ).

We denote by Q the homogeneous dimension of RN with respect to the group of
dilations {δt}t>0, i.e., Q := ε1 + · · ·+ εN . The homogeneousQ plays a crucial role, both
in the geometry and in the functional associated with the operator ∆α.

Proposition. (See [4].) LetΩ be a bounded domain in RN (N > 2). Then the embedding
W 1,2
α (Ω) ↪→ Lp(Ω) is compact for every p ∈ [1, 2∗α), where 2∗α = 2Q/(Q− 2).

Remark 2. For all s ∈ [1, 2∗α), there exists a positive constant Cs such that

|u|s 6 Cs‖u‖. (13)

Theorem 4. (See [18].) Let E = V ⊕X , where E is a real Banach space, and V 6= {0}
is finite dimensional. Suppose that I ∈ C1(E,R) satisfies the (PS)-condition, and let

(i) there is a constant α and a bounded neighborhood D of 0 in V such that
I|∂D 6 α;

(ii) there is a constant β > α such that I|X > β.

Then I possess a critical value c > β. Moreover, c can be characterized as c =
infh∈Γ maxu∈D I(h(u)), where Γ = {h ∈ C(D,E): h = id on ∂D}.

Let X be a Banach space,

Σ = Σ(X) = {A ⊂ X: A closed and symmetric w.r.t. the origin,
i.e., − u ∈ A if u ∈ A}

and H = {h ∈ C(X,X): h odd}. Taking A ∈ Σ, A 6= ∅, the genus of A is γ(A) =
inf{k ∈ N∗: ∃ψ(−u) = −ψ(u) ∀u ∈ A} if such an infimum exists, otherwise, γ(A) =
+∞. Assume that γ(∅) = 0.

Theorem 5. (See [2].) Let H be a real Hilbert space, J ∈ C1(H,R) an even functional,
(Σ,H, γ) an index theory on H . Let S ∈ Σ and consider the pseudoindex theory
(S,H∗, γ∗), where H∗ = {h ∈ H: h bounded homeomorphism s.t. h(u) = u if u /∈
J−1(]0,+∞[)}, and γ∗ = minh∈H∗ γ(h(A)∩S) for allA ∈ Σ. Taking a, b, c0, c∞ ∈ R,
−∞ 6 a < c0 < c∞ < b 6 +∞, we assume that:

(i) the functional J satisfies (PS)− condition in (a, b);
(ii) S ⊆ J−1([c0,+∞[);

(iii) there exist an integer k > 1 and A ∈ Σ such that A ⊂ Jc∞ and γ∗(A) > k.

Then the numbers ci = infA∈Σi supu∈AJ(u), i∈{1, . . . , k}, with Σi = {A∈Σ: γ∗> i}
are critical values for J and c0 6 c1 6 · · · 6 ck 6 c∞. Furthermore, if c = ci = · · · =
ci+r with i > 1 and i+ r 6 k, then γ(Kc) > r + 1.
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3 Proof of the theorems

Before proving Theorem 1, we define the functional I : W 1,2
α → R as follows:

I(u) =
1

2

∫
Ω

|∇αu|2 dx

and 〈
I ′(u), v

〉
=

∫
Ω

∇αu · ∇αv dx = 〈u, v〉.

In order to obtain Theorem 1, we prove the following lemmas.

Lemma 1. IfA 6= ∅ is a weakly closed subspace of W 1,2
α andM := {u ∈ A: |u|2 = 1},

then there exists u0 ∈M such that

min
u∈M

I(u) = I(u0) (14)

and

〈u0, v〉 =

∫
Ω

∇αu0 · ∇αv dx = λ0

∫
Ω

u0v dx ∀v ∈ A, (15)

where λ0 := 2I(u0) > 0.

Proof. Let {uj} be the minimization sequence of I onM, i.e., a sequence uj ∈ M is
such that

I(uj)→ inf
u∈M

I(u) > 0 > −∞ (16)

as j → +∞. Then I(uj) is bounded in R. From the definition of I we have that ‖uj‖ is
bounded.

Note that W 1,2
α is a reflexive Banach space, and we have a subsequence still denoted

as uj and uj ⇀ u0 in W 1,2
α for some u0 ∈ A. Thus,∫

Ω

∇αuj · ∇αv dx→
∫
Ω

∇αu0 · ∇αv dx ∀v ∈W 1,2
α , j → +∞.

From ‖uj‖ bounded and the embedding theorem we have uj → u0 in L2(Ω) as j →∞.
Then |u0|2 = 1, u0 ∈M. By the weak lower semicontinuity we have

lim
j→+∞

I(uj) =
1

2
lim

j→+∞

∫
Ω

|∇αuj |2 dx >
1

2

∫
Ω

|∇αu0|2 dx

= I(u0) > inf
u∈M

I(u).

Therefore, from (16) I(u0) = infu∈M I(u). Hence, (14) is established.
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Next, we let ε ∈ (−1, 1), v ∈M, cε := |u0 + εv|2 and uε := (u0 + εv)/cε. We have
that uε ∈M, and according to |u0|2 = 1, we get

2J(uε) =

∫
Ω

|∇αuε|2 dx =

∫
Ω

∣∣∣∣∇αu0 + εv

cε

∣∣∣∣2 dx =
‖u0 + εv‖2

c2ε

=
〈u0 + εv, u0 + εv〉
(
∫
Ω
|u0 + εv|2 dx)2

=
‖u0‖2 + 2ε〈u0, v〉+ o(ε)

|u0|22 + 2ε
∫
Ω
u0(x)v(x) dx+ o(ε)

=
(
2I(u0) + 2ε〈u0, ε〉+ o(ε)

)(
1− 2

∫
Ω

u0(x)v(x) dx+ o(ε)

)

= 2I(u0) + 2ε

(
〈u0, v〉 − 2I(u0)

∫
Ω

u0(x)v(x) dx

)
+ o(ε).

Note the minimum value of u0, and we have (15). The proof is complete.

Lemma 2. Let λ 6= λ̄ be different eigenvalues of problem (4) with eigenfunctions e and
ē ∈W 1,2

α . Then

〈e, ē〉 = 0 =

∫
Ω

e(x)ē(x) dx.

Proof. If e = 0 or ē = 0, then the proof is complete. Now we consider the case when
e 6= 0 and ē 6= 0. First, consider the characteristic function f := e/|e|2 and f̄ := ē/|ē|2.
Substitute f , f̄ into (4), and we have

λ

∫
Ω

f(x)f̄(x) dx =

∫
Ω

|∇αf | · |∇αf̄ |dx = λ̄

∫
Ω

f(x)f̄(x) dx, (17)

and then
(λ− λ̄)

∫
Ω

f(x)f̄(x) dx = 0.

Note that λ 6= λ̄, we obtain ∫
Ω

f(x)f̄(x) dx = 0. (18)

Combine (17) and (18), and we get〈
e

|e|2
,
ē

|ē|2

〉
= 〈f, f̄〉 =

∫
Ω

|∇αf | · |∇αf̄ |dx = 0.

Thus, 〈e, ē〉 = 0 is established. The proof is complete.

Lemma 3. If e is an eigenfunction of (4), the corresponding eigenvalue is λ, then∫
Ω

|∇αe|2 dx = λ|e|22.

Nonlinear Anal. Model. Control, 28(5):841–858, 2023
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Proof. In (4), replacing v by e, we obtain∫
Ω

|∇αe|2 dx = λ

∫
Ω

e2 dx.

The proof is complete.

Proof of Theorem 1. (i) According to Lemma 1 (choosing A := W 1,2
α ), we obtain that

there is a λ1, i.e.,

λ1 = min
|u|2=1

u∈W 1,2
α

∫
Ω

|∇αu|2 dx.

Moreover, it is an eigenvalue.
(ii) For this, we get that e1 is an eigenfunction corresponding to λ1 by (15). Hence

(with A := W 1,2
α in Lemma 1), (6) is established. It can be seen from (14) that the

minimum λ1 is attained at some e1 ∈ W 1,2
α , where |e1|2 = 1. To complete the proof

of (ii), we first show that if e is an eigenfunction corresponding to λ1, with |e|2 = 1, then
both e and |e| attain the minimum in (5), also, either e > 0 or e 6 0 a.e. in Ω. From
Lemma 3 and (6) we obtain

2I(e) =

∫
Ω

|∇αe|2 dx = λ1 = 2I(e1).

Also, we get I(|e|) = I(e) = I(e1), where |e| ∈ W 1,2
α and ‖e‖2 = λ1, and either

{e > 0} or {e < 0} has zero measure. Hence, by replacing e with e1, we obtain that
e1 > 0. Thus, there exists a function e1 ∈ W 1,2

α with e1 > 0 and is an eigenfunction
relative to λ1, attaining the minimum in (4).

(iii) Assume that λ1 also corresponds to another eigenfunction u in W 1,2
α with 0 6= u

and u 6= e1. It follows from the proof of (ii) that u > 0 or u 6 0 a.e. in Ω. First, consider
the case u > 0 a.e. in Ω. We set

g :=
u

|u|2
, g1 := e1 − g.

Next, we prove that
g1(x) = 0 a.e. x ∈ Ω. (19)

Suppose that g1(x) 6= 0 a.e. x ∈ Ω, and we can conclude that g1 is an eigenfunction
corresponding to λ1. Using the proof of (ii) again, we get that g1 > 0 or g1 6 0 a.e. in Ω.
Thus, either e1 > g or e1 6 g. From e1 > 0 we have one of the following:

e21 > g2 or e21 6 g2 a.e. in Ω.

Also, ∫
Ω

(
e21(x)− g2(x)

)
dx = |e1|22 − |g|22 = 0.

https://www.journals.vu.lt/nonlinear-analysis
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According to the above, we get e21 − g2 = 0, so e1 = g. Hence, g1 = 0 a.e. in Ω. That
is a contradiction, so (19) is established. Therefore, f1 is proportional to e1, i.e. u = ξe1,
ξ ∈ R. The situation when u 6 0 a.e. in Ω is similar.

(iv) By Lemma 1 (choosing A := Pk+1) we see that there exists λk+1 such that (9)
holds, and it is attained at some ek+1 ∈ Pk+1. Also, from Pk+1 ⊆ Pk ⊆W 1,2

α we have

0 < λ1 6 λ2 6 · · · 6 λk 6 λk+1.

First, we prove (7). In fact, we show λ1 6= λ2. Indeed, if λ1 = λ2 and e2 ∈ P2 also is
an eigenfunction relative to λ1, from (iii) we get that e2 = ξe1 with ξ ∈ R and ξ 6= 0 so
e2 6= 0. From e2 ∈ P2 we have

0 = 〈e1, e2〉 = 〈e1, ξe1〉 = ξ‖e1‖2.

We conclude that e1 = 0, which is a contradiction.
Now apply (15) with A = Pk+1, and we have∫

Ω

∇αek+1 · ∇αv dx = λk+1

∫
Ω

ek+1(x)v(x) dx ∀v ∈ Pk+1. (20)

In order to show that λk+1 is an eigenvalue with eigenfunction ek+1, we need to show
that the above formula holds for any v ∈W 1,2

α not only in Pk+1. We define

X1 = span{e1, . . . , ek}, X2 = X⊥1 = Pk+1, W 1,2
α = X1 ⊕X2.

Hence, for any v ∈W 1,2
α , v := v1 + v2, where v2 ∈ Pk+1, and v1 =

∑k
j=1 cjej for some

c1, . . . , ck ∈ R. Put v2 = v − v1 into (20), and with the definition of v1 we deduce∫
Ω

∇αek+1 · ∇αv dx− λk+1

∫
Ω

ek+1(x)v(x) dx

=

∫
Ω

∇αek+1 · ∇αv1 dx− λk+1

∫
Ω

ek+1(x)v1(x) dx

=

k∑
j=1

cj

[ ∫
Ω

∇αek+1 · ∇αej dx− λk+1

∫
Ω

ek+1(x)ej(x) dx

]
. (21)

Test the eigenvalue equation (4) for ej against ek+1 for j = 1, . . . , k, furthermore, ek+1 ∈
Pk+1, and we have

0 =

∫
Ω

∇αek+1 · ∇αej dx = λj

∫
Ω

ek+1(x)ej(x) dx,

so

0 =

∫
Ω

∇αek+1 · ∇αej dx =

∫
Ω

ek+1(x)ej(x) dx ∀j = 1, . . . , k.
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Putting the above formula into (21), we deduce that (20) is established for any v ∈W 1,2
α .

Hence λk+1 is an eigenvalue with eigenfunction ek+1.
Next, in order to obtain (8), we prove that if k, h ∈ N, k 6= h, then 〈ek, eh〉 = 0 =∫

Ω
ek(x)eh(x) dx. In fact, let k > h, then k − 1 > h, and

ek ∈ Pk =
(
span{e1, . . . , ek−1}

)⊥ ⊆ (span{eh}
)⊥
.

Then 〈ek(x), eh(x)〉 = 0. However, ek is an eigenfunction. We substitute ek into (4) and
replace v with eh, and we have∫

Ω

∇αek · ∇αeh dx = λk

∫
Ω

ekeh dx,

so 〈ek, eh〉 = 0 =
∫
Ω
ek(x)eh(x) dx. To prove λk → +∞, we assume λk → c, k →

+∞ for some c ∈ R, so λk is bounded in R. By Lemma 3 we get ‖ek‖2 = λk, and there
exists a subsequence {ekj} and some e∞ ∈ L2(Ω) with

ekj → e∞ in L2(Ω) as kj →∞.

According to the previous analysis, we see that ekj and eki are orthogonal in L2(Ω), and
we get

|ekj − eki |2 = |ekj |2 + |eki |2 = 2.

We have a contradiction since ekj is a Cauchy sequence in L2(Ω). Thus, (8) is estab-
lished.

Finally, we show (9). Suppose that there exists an eigenvalue λ /∈ {λk}k∈N, and let e ∈
W 1,2
α be an eigenfunction corresponding to λ, so |e|2 = 1 is obtained by normalization.

According to Lemma 3, we get

2I(e) =

∫
Ω

|∇αe|2 dx = λ. (22)

Also, by (5) and (6) we have

λ = 2I(e) > 2I(e1) = λ1.

From λ /∈ {λk}k∈N and (8) we see that there exists k ∈ N such that

λk < λ < λk+1.

Assume that e ∈ Pk+1 and (22) and (9) imply that λ = 2I(e) > λk+1, which is
a contradiction. Thus, we have e /∈ Pk+1, and there exists j ∈ {1, . . . , k} such that
〈e, ej〉 6= 0, so this contradicts Lemma 2. This completes the proof of (iv).

(v) Apply Lemma 1, let A be replaced by Pk+1, and the minimum defining λk+1

is attained for some ek+1 ∈ Pk+1. By Lemma 1 we have (11). According to the proof
of (iv), we see that (21) holds for any v ∈ W 1,2

α , so we can conclude that ek+1 is an
eigenfunction relative to λk+1. This completes the proof of (v).
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(vi) From the proof of (iv) we see that the sequence {ek}k∈N of eigenfunctions
corresponding to λk is an orthonormal basis. Next, to complete the proof of (vi), we
claim that the {ek}k∈N is a basis for both W 1,2

α and L2(Ω).
First, we prove that it is a basis of W 1,2

α . We prove that if v ∈ W 1,2
α is such that for

all k ∈ N, 〈v, ek〉 = 0, then v ≡ 0. Assume that v 6= 0 and there exists a nontrivial
v ∈ W 1,2

α such that for all k ∈ N, 〈v, ek〉 = 0, and by normalization we assume that
|v|2 = 1. Therefore, from (8) there exists a k ∈ N such that

2I(v) < λk+1 = min
|u|2=1
u∈Pk+1

∫
Ω

|∇αu|2 dx.

We see v /∈ Pk+1 and there exists j ∈ N such that 〈v, ej〉 6= 0. This contradicts the
assumption. Now we define Ei := ei/‖ei‖, and let g ∈ W 1,2

α , gj :=
∑j
i=1〈g,Ei〉Ei.

Also, gj ∈ span{e1, . . . , ej} for all j ∈ N. DefineGj := g−gj , and by the orthogonality
of {ek}k∈N in W 1,2

α

0 6 ‖Gj‖2 = 〈Gj , Gj〉 = 〈g − gj ,−gj〉

= ‖g‖2 + ‖gj‖2 − 2〈g, gj〉 = ‖g‖2 + 〈gj , gj〉 − 2

〈
g,

j∑
i=1

〈g,Ei〉Ei

〉

= ‖g‖2 − 2

j∑
i=1

〈g,Ei〉2.

Then 2
∑j
i=1〈g,Ei〉2 6 ‖g‖2 for all j ∈ N. We deduce that

∑+∞
i=1 〈g,Ei〉2 is a con-

vergent series. Now we assume that ωj :=
∑j
i=1〈g,Ei〉2, and since ωj is a convergent

series, it is a Cauchy sequence in R. Also, from the orthogonality of {ek}k∈N in W 1,2
α we

get

‖Gj −GJ‖2 = ‖gJ − gj‖2 =

∥∥∥∥∥
J∑

i=j+1

〈g,Ei〉Ei

∥∥∥∥∥
2

=

J∑
i=j+1

〈g,Ei〉2 = ωJ − ωj if J > j.

We obtain that Gj is a Cauchy sequence in W 1,2
α , and by the completeness of W 1,2

α there
exists a G ∈W 1,2

α such that

Gj → G in W 1,2
α , j →∞. (23)

Moreover,

〈Gj , Ek〉 = 〈g,Ek〉 − 〈gj , Ek〉 = 〈g,Ek〉 − 〈g,Ek〉 = 0.

From (23), for any k ∈ N, we have 〈G,Ek〉 = 0, that is, G = 0. Hence,

gj → g as j →∞ in W 1,2
α .
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Finally, we prove that {ek}k∈N is a basis forL2(Ω). Let v ∈ L2(Ω) and vj ∈ C1
0 (Ω) such

that |vj − v|2 6 1/j. From C1
0 (Ω) ⊆ W 1,2

α it follows that vj ∈ W 1,2
α . Since {ek}k∈N is

a basis for W 1,2
α , hence there exists kj ∈ N and function µj , and µj ∈ span{e1, . . . , ekj}

such that ‖vj − µj‖ 6 1/j. Thus,

|vj − µj |2 6 C‖vj − µj‖ 6
C

j

and

|v − µj |2 6 |v − vj |2 + |vj − µj |2 6
C + 1

j
.

Therefore, the sequence {ek}k∈N of eigenfunctions of (4) is a basis in L2(Ω).
(vii) Consider some h ∈ N0 such that λk−1 < λk = · · · = λk+h < λk+h+1. We let

W 1,2
α = span{ek, . . . , ek+h} ⊕

(
span{ek, . . . , ek+h}

)⊥
,

and φ = φ1 + φ2, where φ1 ∈ span{ek, . . . , ek+h}, and φ2 ∈ (span{ek, . . . , ek+h})⊥.
We have

〈φ1, φ2〉 = 0. (24)

Since φ is an eigenfunction relative to λk, substituting φ into (4), from (24) we have

‖φ1‖2 + ‖φ2‖2 = ‖φ‖2 =

∫
Ω

|∇αφ|2 dx = λk

∫
Ω

φ2 dx. (25)

According to (v), we have that ek, . . . , ek+h are eigenfunctions relative to λk = · · · =
λk+h and φ is also an eigenfunction corresponding to λk. Hence, substituting both φ1
and φ2 into (4), we have

λk

∫
Ω

φ1φ2 dx =

∫
Ω

|∇αφ1| · |∇αφ2|dx = 〈φ1, φ2〉 = 0 =⇒
∫
Ω

φ1φ2 dx = 0

and
|φ1|22 = |φ1 + φ2|22 = |φ1|22 + |φ2|22. (26)

Let

φ1 =

k+h∑
i=k

cjej , cj ∈ R.

By (v) and the orthogonality in (vi) we have

‖φ1‖2 = 〈φ1, φ1〉 =

k+h∑
j=k

〈cjej , cjej〉 =

k+h∑
j=k

c2j‖ej‖2

=

k+h∑
j=k

c2jλj = λk

k+h∑
j=k

c2j = λk|φ1|22. (27)
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Since φ1 and φ are eigenfunctions corresponding to λk, hence we deduce that φ2 is also
an eigenfunction corresponding to λk. From Lemma 2 and (12) we get

〈φ2, e1〉 = 〈φ2, e2〉 = · · · = 〈φ2, ek−1〉 = 0

and
φ2 ∈

(
span{ek, . . . , ek+h}

)⊥
= Pk+h+1.

Now we prove that φ2 = 0 via contradiction. If φ2 6= 0, from (10)

λk < λk+h+1 = min
u∈Pk+h+1\{0}

∫
Ω
|∇αu|2 dx∫
Ω
|u|2 dx

6

∫
Ω
|∇αφ2|2 dx∫
Ω
|φ2|2 dx

=
‖φ2‖2

|φ2|22
. (28)

Also, from (25)–(28) we have

λk|φ|22 = ‖φ1‖2 + ‖φ2‖2 > λk|φ1|22 + λk|φ2|22 = λk|φ|22.

This is a contradiction. Therefore, we deduce that φ = φ1 ∈ span{ek, . . . , ek+h}. The
proof is complete.

Now we define the following energy functional:

Jλ(u) =
1

2

∫
Ω

|∇αu|2 dx− λ

2

∫
Ω

u2 dx−
∫
Ω

F (x, u) dx,

where F (x, u) =
∫ u
0
f(x, t) dt. From the hypotheses on f we observe that Jλ is well

defined on W 1,2
α (Ω) and Jλ ∈ C1(W 1,2

α (Ω),R) with〈
J ′λ(u), v

〉
=

∫
Ω

∇αu∇αv dx− λ
∫
Ω

uv dx−
∫
Ω

f(x, u)v dx ∀v ∈W 1,2
α . (29)

To establish Theorems 2 and 3, we first provide the following lemmas, which shows
that the (PS)-condition is satisfied.

Lemma 4. Let (f 1), (f 2) be satisfied. Then any (PS)-sequence {uj} of Jλ is bounded in
W 1,2
α .

Proof. Let {uj} ⊂W 1,2
α be a (PS)-sequence such that

Jλ(uj) 6 c, J ′λ(uj)→ 0, (30)

and then we have

〈uj , ϕ〉 − λ
∫
Ω

ujϕdx−
∫
Ω

f(x, uj)ϕdx = o(1) ∀ϕ ∈W 1,2
α . (31)

From (f 1) and (f 2), for all ε > 0, there exists Cε > 0 such that∣∣f(x, t)
∣∣ 6 ε|t|+ Cε a.e. x ∈ Ω ∀t ∈ R. (32)
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Assume that ‖uj‖ → ∞ as j →∞. Set vj := uj/‖uj‖, and then ‖vj‖=1. Thus, we have
vj ⇀ v in W 1,2

α , vj → v in Lp for 1 6 p < 2∗α. In (31), ϕ is replaced by vj − v, and
dividing by ‖uj‖, one has

〈vj , vj − v〉 = λ

∫
Ω

vj(vj − v) dx+

∫
Ω

f(x, uj)

‖uj‖
(vj − v) dx+ o(1).

From vj → v in Lp for 1 6 p < 2∗α and Hölder’s inequality we have∣∣∣∣ ∫
Ω

vj(vj − v) dx

∣∣∣∣ 6 |vj |2|vj − v|2 = o(1). (33)

Moreover, from (32) we have that∣∣∣∣ ∫
Ω

f(x, uj)

‖uj‖
(vj − v) dx

∣∣∣∣ 6 ∣∣∣∣ ∫
Ω

(
εvj +

Cε
‖uj‖

)
(vj − v) dx

∣∣∣∣
6 ε|vj |2|vj − v|2 + Cε

|vj − v|1
‖uj‖

= o(1). (34)

Hence, from (33), (34), we get 〈vj , vj − v〉 = o(1). Thus, vj → v strongly in W 1,2
α . If

v = 0, we obtain ‖vj‖ → 0, a contradiction. Hence, v 6= 0. Now, dividing (31) by ‖uj‖,
we obtain

〈vj , ϕ〉 − λ
∫
Ω

vjϕdx−
∫
Ω

f(x, uj)ϕ

‖uj‖
dx = o(1). (35)

From (f 2) we have

lim
j→+∞

∫
Ω

f(x, uj)ϕ

‖uj‖
dx = lim

j→+∞

∫
Ω

f(x, uj)

uj
vjϕdx = 0.

Passing to the limit in (35), from vj → v strongly in W 1,2
α we have that 〈v, ϕ〉 =

λ
∫
Ω
vϕdx for all ϕ ∈ W 1,2

α . This implies that λ ∈ σ(−∆α), which contradicts (λ1).
Therefore, {uj} is a bounded sequence.

Lemma 5. Let (f 1), (f 2) be satisfied. Then any (PS)-sequence {uj} has a convergent
subsequence.

Proof. We see that {uj} is bounded in W 1,2
α , and therefore, we can assume that there is

a subsequence, still denoted by {uj} and there exists u1 ∈ W 1,2
α such that uj ⇀ u1 in

W 1,2
α and uj → u1 in Lp for all p ∈ [1, 2∗α). From (29) and (30) we get

〈J ′λ(uj), uj − u1〉 → 0, j → +∞. (36)
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Moreover, from (32) and the Hölder inequality we have∫
Ω

∣∣f(x, uj)
∣∣|uj − u1|dx 6

∫
Ω

(
ε|uj |+ Cε

)
|uj − u1|dx

6 ε|uj |2|uj − u1|2 + Cε|uj − u1|1 → 0, j → +∞.

Therefore, from (29) and (36) it follows that

〈J ′λ(uj − u1), uj − u1〉 =

∫
Ω

∣∣∇α(uj − u1)
∣∣2 dx− λ

∫
Ω

|uj − u1|2 dx

−
∫
Ω

f(x, uj − u1)|uj − u1|dx→ 0.

Thus, ‖uj − u1‖2 → 0. Hence uj → u1 in W 1,2
α . The proof is complete.

Proof of Theorem 2. Let {ek}k the eigenfunctions corresponding to λk be the orthonor-
mal basis of W 1,2

α . According to the proof of Theorem 1, we have

W 1,2
α = X1 ⊕X2.

Consider λ > λ1, and λ /∈ σ(∆α). By the definition of the eigenvalues, we get

‖u‖2 6 λk|u|22 ∀u ∈ X1 and ‖u‖2 > λk+1|u|22 ∀u ∈ X2. (37)

According to (32), we have |F (x, t)| 6 C1(1 + t2) for a.e. x ∈ Ω, for all t ∈ R. For
every u ∈ X1, we have

Jλ(u) =
1

2

∫
Ω

|∇αu|2 dx− λ

2

∫
Ω

u2 dx−
∫
Ω

F (x, u) dx

6
λk
2
|u|22 −

λ

2
|u|22 +

ε

2

∫
Ω

u2 dx+ Cε

∫
Ω

udx

6
1

2
(λk − λ+ ε)|u|22 + C2|u|2. (38)

Let λk < λ be such that λk + ε < λ. Then, since X1 is a finite dimensional subspace
and Jλ → −∞ as ‖u‖ diverges in X1, there exists a positive constant C3 such that
Jλ(u) 6 −C3 for all u ∈ X1. On the other hand, from (37), for every u ∈ X2, we have

Jλ(u) =
1

2

∫
Ω

|∇αu|2 dx− λ

2

∫
Ω

u2 dx−
∫
Ω

F (x, u) dx

>
1

2
‖u‖2 − λ

2λk+1
‖u‖2 −

∫
Ω

C1

(
1 + u2

)
dx

>
1

2

(
1− λ+ C4

λk+1

)
‖u‖2 − C5.
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We obtain that Jλ(u) > C6 for all u ∈ X2. Therefore, let E = W 1,2
α , V = X1 and

X = X2, and it follows from Lemmas 4 and 5 that all the conditions of Theorem 4 are
satisfied.

If λ < λ1, the functional Jλ is coercive and can be shown to a global minimum using
the method of the Weierstrass Theorem. The proof is complete.

Lemma 6. Let (f 1)–(f 3), (λ1), (λ2) be satisfied. Then there exist ρ > 0 and c0 > 0 such
that Jλ(u) > c0 for all u ∈ Sρ ∩X2, Sρ := {u ∈W 1,2

α : ‖u‖ = ρ}.

Proof. According to (Λ2), we have that λ0 < 0. Therefore, it follows from (f 2) that for
every ε > 0, there exist δ1 > 1 and δ2 > 0 such that∣∣F (x, t)

∣∣ 6 ε

2
t2 if |t| > δ1 for a.e. x ∈ Ω, (39)

and ∣∣∣∣F (x, t)− λ0
2
t2
∣∣∣∣ 6 ε

2
t2 if |t| < δ2 for a.e. x ∈ Ω. (40)

From (f 1), choosing any constant p ∈ [0, 4Q/(Q− 2)), there exists ε > 0 such that∣∣F (x, t)
∣∣ 6 ε|t|p+2 if δ2 6 |t| 6 δ1 for a.e. x ∈ Ω. (41)

Hence, it follows from (39)–(41) that there exists ε1 such that |F (x, t)| 6 (λ0 + ε)t2/2 +
ε1|t|p+2, t ∈ R, for a.e. x ∈ Ω. Integrate both sides of the above formula, and we have
that ∫

Ω

∣∣F (x, u)
∣∣ dx 6

λ0 + ε

2
|u|22 + ε1|u|p+2

p+2 ∀u ∈W 1,2
α . (42)

Then from (13), (37) and (42) we have

Jλ(u) =
1

2

∫
Ω

|∇αu|2 dx− λ

2

∫
Ω

u2 dx−
∫
Ω

F (x, u) dx

>
1

2
‖u‖2 − λ

2
|u|22 −

λ0 + ε

2
|u|22 − ε1|u|

p+2
p+2

>
1

2
‖u‖2 − λ

2λk+1
‖u‖2 − λ0 + ε

2λk+1
‖u‖2 − ε1‖u‖p+2

>
1

2

(
1− λ+ λ0 + ε

λh

)
‖u‖2 − ε1‖u‖p+2.

Based on (λ2), note that ε can be small enough, there exists a constant α such that Jλ(u) >
α‖u‖2 − ε′‖u‖p+2. If ρ is small enough, there exist c0 > 0 such that Jλ(u) > c0.

Lemma 7. Let (f 1), (f 3) and (λ2) be satisfied. Then there exist c∞ > c0 such that
Jλ(u) 6 c∞ for all u ∈ X1.
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Proof. From (38), for every u ∈ X1, we have that Jλ(u) 6 (1/2)(1− (λ+C2)/λk)‖u‖2
asX1 is a finite dimensional subspace, and Jλ → −∞ as ‖u‖ diverges inX1. We see that
there exists c∞ = c∞(ε)(c∞ > c0) such that Jλ(u) 6 c∞.

Proof of Theorem 3. From Lemmas 4 and 5 we see that Jλ satisfies the (PS)-condition.
Also, by Lemmas 6 and 7 we consider the pseudoindex theory (Sρ ∩X2,H∗, γ∗) related
to the genus, Sρ ∩ X2 and Jλ. By Theorem A.2 in [18], with V = X1, ∂B = Sρ and
W = X2, we get γ(X1 ∩ h(Sρ ∩ X2)) > dimX1 − codimX2 for all h ∈ X1, which
implies that γ∗(X1) > k− h− 1. Hence, with A = X1, S = Sρ ∩X2, all the conditions
of Theorem 5 are satisfied. Thus, Jλ has at least k− h− 1 distinct pairs of critical points
corresponding to at most k − h− 1 distinct critical values ci. The proof is complete.

References

1. C.T. Anh, B.K. My, Existence of solutions to ∆λ-Laplace equations without the Ambrosetti–
Rabinowitz condition, Complex Var. Elliptic Equ., 61(1):137–150, 2016, https://doi.
org/10.1080/17476933.2015.1068762.

2. R. Bartolo, A.M. Candela, A. Salvatore, Perturbed asymptotically linear problems, Ann. Mat.
Pura Appl. (4), 193(1):89–101, 2014, https://doi.org/10.1007/s10231-012-
0267-9.

3. J. Chen, X. Tang, Z. Gao, Infinitely many solutions for semilinear ∆λ-Laplace equations
with sign-changing potential and nonlinearity, Stud. Sci. Math. Hung., 54(4):536–549, 2017,
https://doi.org/10.1556/012.2017.54.4.1382.

4. A.E. Kogoj, E. Lanconelli, On semilinear ∆λ-Laplace equation, Nonlinear Anal., Theory
Methods Appl., 75(12):4637–4649, 2012, https://doi.org/10.1016/j.na.2011.
10.007.

5. A.E. Kogoj, S. Sonner, Hardy type inequalities for ∆λ-Laplacians, Complex Var. Elliptic Equ.,
61(3):422–442, 2016, https://doi.org/10.1080/17476933.2015.1088530.

6. D.T. Luyen, Two nontrivial solutions of boundary-value problems for semilinear ∆γ-
differential equations, Math. Notes, 101(5–6):815–823, 2017, https://doi.org/10.
1134/S0001434617050078.

7. D.T. Luyen, Existence of nontrivial solution for fourth-order semilinear ∆γ-Laplace equation
in RN , Electron. J. Qual. Theory Differ. Equ., 2019:78, 2019, https://doi.org/10.
14232/ejqtde.2019.1.78.

8. D.T. Luyen, Sign-changing solutions of boundary value problems for semilinear ∆γ-Laplace
equations, Rend. Semin. Mat. Univ. Padova, 143:113–134, 2020, https://doi.org/10.
4171/rsmup/42.

9. D.T. Luyen, Nontrivial solutions to boundary value problems for semilinear ∆γ-differential
equations, Appl. Math., 66(4):461–478, 2021, https://doi.org/10.21136/AM.
2021.0363-19.

10. D.T. Luyen, Picone’s identity for ∆γ-Laplace operator and its applications, Ukr. Math. J.,
73(4):601–609, 2021, https://doi.org/10.1007/s11253-021-01946-7.

Nonlinear Anal. Model. Control, 28(5):841–858, 2023

https://doi.org/10.1080/17476933.2015.1068762
https://doi.org/10.1080/17476933.2015.1068762
https://doi.org/10.1007/s10231-012-0267-9
https://doi.org/10.1007/s10231-012-0267-9
https://doi.org/10.1556/012.2017.54.4.1382
https://doi.org/10.1016/j.na.2011.10.007
https://doi.org/10.1016/j.na.2011.10.007
https://doi.org/10.1080/17476933.2015.1088530
https://doi.org/10.1134/S0001434617050078
https://doi.org/10.1134/S0001434617050078
https://doi.org/10.14232/ejqtde.2019.1.78
https://doi.org/10.14232/ejqtde.2019.1.78
https://doi.org/10.4171/rsmup/42
https://doi.org/10.4171/rsmup/42
https://doi.org/10.21136/AM.2021.0363-19
https://doi.org/10.21136/AM.2021.0363-19
https://doi.org/10.1007/s11253-021-01946-7
https://doi.org/10.15388/namc.2023.28.32177


858 J. Zu et al.

11. D.T. Luyen, Multiple solutions for ∆γ-Laplace problems without the Ambrosetti–Rabinowitz
condition, Asian-Eur. J. Math., 15(3):2250051, 2022, https://doi.org/10.1142/
S1793557122500516.

12. D.T. Luyen, L.T.H. Hanh, Infinitely many solutions for semilinear ∆γ-differential equations in
RN without the Ambrosetti-Rabinowitz condition, Minimax Theory Appl., 5(1):7–18, 2020.

13. D.T. Luyen, L.T.H. Hanh, Infinitely many solutions for perturbed ∆γ-Laplace equations,
Georgian Math. J., 29(6):863–882, 2022, https://doi.org/10.1515/gmj-2022-
2179.

14. D.T. Luyen, L.T.H. Hanh, Three nontrivial solutions of boundary value problems for semilinear
∆γ-Laplace equation, Bol. Soc. Parana. Mat. (3), 40:1–10, 2022, https://doi.org/10.
5269/bspm.45841.

15. D.T. Luyen, D.T. Huong, L.T.H. Hanh, Existence of infinitely many solutions for ∆γ-
Laplace problems, Math. Notes, 103(5–6):724–736, 2018, https://doi.org/10.1134/
S000143461805005X.

16. D.T. Luyen, N.T. Nam, Infinitely many solutions for fourth-order semilinear ∆γ-Laplace
equation in RN , J. Elliptic Parabol. Equ., 7(2):977–988, 2021, https://doi.org/10.
1007/s41808-021-00129-6.

17. D.T. Luyen, N.M. Tri, Existence of solutions to boundary-value problems for similinear ∆γ

differential equations, Math. Notes, 97(1–2):73–84, 2015, https://doi.org/10.1134/
S0001434615010101.

18. P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential
Equations, CBMS Reg. Conf. Ser. Math., Vol. 65, AMS, Providence, RI, 1986, https:
//doi.org/10.1090/cbms/065.

19. B. Rahal, Liouville-type theorems with finite Morse index for semilinear ∆λ-Laplace
operators, NoDEA, Nonlinear Differ. Equ. Appl., 25(3):21, 2018, https://doi.org/
10.1007/s00030-018-0512-z.

20. B. Rahal, M.K. Hamdani, Infinitely many solutions for ∆α-Laplace equations with sign-
changing potential, J. Fixed Point Theory Appl., 20(4):137, 2018, https://doi.org/
10.1007/s11784-018-0617-3.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1142/S1793557122500516
https://doi.org/10.1142/S1793557122500516
https://doi.org/10.1515/gmj-2022-2179
https://doi.org/10.1515/gmj-2022-2179
https://doi.org/10.5269/bspm.45841
https://doi.org/10.5269/bspm.45841
https://doi.org/10.1134/S000143461805005X
https://doi.org/10.1134/S000143461805005X
https://doi.org/10.1007/s41808-021-00129-6
https://doi.org/10.1007/s41808-021-00129-6
https://doi.org/10.1134/S0001434615010101
https://doi.org/10.1134/S0001434615010101
https://doi.org/10.1090/cbms/065
https://doi.org/10.1090/cbms/065
https://doi.org/10.1007/s00030-018-0512-z
https://doi.org/10.1007/s00030-018-0512-z
https://doi.org/10.1007/s11784-018-0617-3
https://doi.org/10.1007/s11784-018-0617-3
https://www.journals.vu.lt/nonlinear-analysis

	Introduction
	Preliminaries
	Proof of the theorems
	References

