Nontrivial solutions for an asymptotically linear Δ_{α}-Laplace equation

Jiafa Xu ${ }^{\text {a, }}{ }^{1} \oplus$, Jia Chen ${ }^{\text {b }}$, Donal O'Regan ${ }^{\text {c }}$ ©
${ }^{\text {a }}$ School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China xujiafa292@sina.com
${ }^{\mathrm{b}}$ School of Mathematics and Statistics
\& Chongqing Key Laboratory of Economic and Social Application Statistics, Chongqing Technology and Business University, Chongqing 400067, China
${ }^{\text {c }}$ School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland

Received: November 4, 2022 / Revised: April 5, 2023 / Published online: June 30, 2023

Abstract

In this paper, we study a class of degenerate unperturbed problems. We first investigate some properties of eigenvalues and eigenfunctions for the strongly degenerate elliptic operator and then obtain two existence theorems of nontrivial solutions when the nonlinearity is a function with an asymptotically condition.

Keywords: asymptotically linear, saddle point theorem, strongly degenerate elliptic operator.

1 Introduction

Our aim in this paper is to study the following nonlinear elliptic equation:

$$
\begin{align*}
& -\Delta_{\alpha} u-\lambda u=f(x, u), \quad x \in \Omega \\
& u=0, \quad x \in \partial \Omega \tag{1}
\end{align*}
$$

where Ω is a smooth bounded domain of $\mathbb{R}^{N}(N>2), \lambda$ is a parameter, and Δ_{α} is a strongly degenerate elliptic operator of the form

$$
\Delta_{\alpha}:=\sum_{i=1}^{N} \partial_{x_{i}}\left(\alpha_{i}^{2} \partial_{x_{i}}\right), \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right): \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}
$$

[^0]The strong degenerate elliptic operator Δ_{α} was first introduced in [4], and the authors [5] remarked that Δ_{α}-Laplacian belong to the more general class of X-elliptic operators.

The Δ_{α} operator contains many degenerate elliptic operators such as the Grushintype operator $G_{a}=\Delta_{x}+|x|^{2 a} \Delta_{y}, a>0$, where (x, y) denotes the point of $\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}$, $N_{1}+N_{2}=N$, and the operator of the form $P_{a, b, c}=\Delta_{x}+|x|^{2 a} \Delta_{y}+|x|^{2 b}|y|^{2 c} \Delta_{z}$, $(x, y, z) \in \mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}} \times \mathbb{R}^{N_{3}}, N_{1}+N_{2}+N_{3}=N$, where a, b and c are real positive constants. We refer readers to [1] for some important properties of this operator.

Many authors considered (1) with $\lambda=0$, i.e.,

$$
\begin{align*}
& -\Delta_{\alpha} u=f(x, u), \quad x \in \Omega \\
& u=0, \quad x \in \partial \Omega \tag{2}
\end{align*}
$$

In [1] the authors used the mountain pass theorem and the fountain theorem to study the existence and multiplicity of solutions for (2), where f satisfies a superlinear growth condition, and in [17] the authors examined the case where (2) has a nontrivial solution using sub-super solutions and variational methods. In [6] the authors adopted the three critical point theorem to consider the case where (2) has at least two solutions, and in [3,15] the authors investigated the existence of infinitely many solutions when f satisfies a general superlinear growth condition. For more research to this kinds of equations, we also refer the readers to $[7-14,16,19,20]$ and the references therein.

Following [4], we denote by $W_{\alpha}^{1,2}(\Omega)$ the closure of $C_{0}^{1}(\Omega)$ with respect to the norm $\|u\|_{W_{\alpha}^{1,2}(\Omega)}=\left(\int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x\right)^{1 / 2}$, which is a Hilbert space with the inner product $\langle u, v\rangle=\int_{\Omega}^{\alpha} \nabla_{\alpha} u \cdot \nabla_{\alpha} v \mathrm{~d} x$. Here $\nabla_{\alpha}=\left(\alpha_{1} \partial_{x_{1}} u, \ldots, \alpha_{N} \partial_{x_{N}} u\right)$. For convenience, we abbreviate the norm $\|\cdot\|_{W_{\alpha}^{1,2}(\Omega)}$ as $\|\cdot\|$, and let $|\cdot|_{q}$ be the usual norm in the Lebesgue space $L^{q}(\Omega)$.

In order to study the asymptotically linear problem, we first present eigenvalues properties for Δ_{α}. We note that the author in [6] presented some properties for this operator, but the author did not provide proofs. For completeness, we first study the eigenvalue problem associated with (1),

$$
\begin{align*}
& -\Delta_{\alpha} u=\lambda u, \quad x \in \Omega, \\
& u=0, \quad x \in \partial \Omega \tag{3}
\end{align*}
$$

where $\lambda \in \mathbb{R}$ is the eigenvalue of the problem if there exists $u \in W_{\alpha}^{1,2} \backslash\{0\}$ such that (3) holds. Denote by $\sigma\left(-\Delta_{\alpha}\right)$ and $0<\lambda_{1}<\cdots<\lambda_{k}<\cdots$ the spectrum and the distinct eigenvalues of $-\Delta_{\alpha}$ in $W_{\alpha}^{1,2}(\Omega)$, respectively.

We note that problem (3) is equivalent to

$$
\begin{equation*}
\int_{\Omega} \nabla_{\alpha} u \cdot \nabla_{\alpha} v \mathrm{~d} x=\lambda \int_{\Omega} u v \mathrm{~d} x, \quad u, v \in W_{\alpha}^{1,2} \tag{4}
\end{equation*}
$$

Theorem 1. Let Ω be an open bounded set of \mathbb{R}^{N}. Then the eigenvalues and eigenfunctions of Δ_{α} have the following properties:
(i) Problem (4) has a positive eigenvalue λ_{1}, and its characteristic is

$$
\begin{equation*}
\lambda_{1}=\min _{\substack{|u|_{2}=1 \\ u \in W_{\alpha}^{1,2}}} \int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x \tag{5}
\end{equation*}
$$

or, equivalently,

$$
\lambda_{1}=\min _{u \in W_{\alpha}^{1,2}} \frac{\int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x}{\int_{\Omega}|u|^{2} \mathrm{~d} x} .
$$

(ii) There exists a positive function $e_{1} \in W_{\alpha}^{1,2}$, which is an eigenfunction corresponding to λ_{1}, attaining the minimum in (4), i.e., $\left|e_{1}\right|_{2}=1$ and

$$
\begin{equation*}
\lambda_{1}=\int_{\Omega}\left|\nabla_{\alpha} e_{1}\right|^{2} \mathrm{~d} x \tag{6}
\end{equation*}
$$

(iii) The first eigenvalue λ_{1} is simple, i.e., if $u \in W_{\alpha}^{1,2}$ is a solution of the following equation

$$
\int_{\Omega} \nabla_{\alpha} u \cdot \nabla_{\alpha} v \mathrm{~d} x=\lambda_{1} \int_{\Omega} u v \mathrm{~d} x \quad \forall v \in W_{\alpha}^{1,2}
$$

then $u=\xi e_{1}$ with $\xi \in \mathbb{R}$.
(iv) The set of eigenvalues of (4) consists of a sequence $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ with

$$
\begin{equation*}
0<\lambda_{1}<\lambda_{2} \leqslant \cdots \leqslant \lambda_{k} \leqslant \lambda_{k+1} \leqslant \cdots \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{k} \rightarrow+\infty \quad \text { as } k \rightarrow+\infty . \tag{8}
\end{equation*}
$$

Moreover, for any $k \in \mathbb{N}$, the eigenvalues can be characterized as follows:

$$
\begin{equation*}
\lambda_{k+1}=\min _{|u|_{2}=1 u \in \mathbb{P}_{k+1}} \int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x \tag{9}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\lambda_{k+1}=\min _{u \in \mathbb{P}_{k+1} \backslash\{0\}} \frac{\int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x}{\int_{\Omega}|u|^{2} \mathrm{~d} x}, \tag{10}
\end{equation*}
$$

where

$$
\mathbb{P}_{k+1}:=\left\{u \in W_{\alpha}^{1,2} \text { s.t. }\left\langle u, e_{j}\right\rangle=0 \forall j=1, \ldots, k\right\} .
$$

(v) For any $k \in \mathbb{N}$, there exists a function $e_{k+1} \in \mathbb{P}_{k+1}$, which is an eigenfunction corresponding to λ_{k+1}, attaining the minimum in (9), i.e., $\left|e_{k+1}\right|_{2}=1$ and

$$
\begin{equation*}
\lambda_{k+1}=\int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x \tag{11}
\end{equation*}
$$

(vi) The sequence $\left\{e_{k}\right\}_{k}$ of eigenfunctions corresponding to λ_{k} is an orthonormal basis of $L^{2}(\Omega)$ and orthogonal basis of $W_{\alpha}^{1,2}$.
(vii) Each eigenvalue λ_{k} has finite multiplicity. More precisely, if λ_{k} satisfies

$$
\begin{equation*}
\lambda_{k-1}<\lambda_{k}=\cdots=\lambda_{k+h}<\lambda_{k+h+1} \tag{12}
\end{equation*}
$$

for some $h \in \mathbb{N}_{0}$, then the set of all the eigenfunctions corresponding to λ_{k} agree with $\operatorname{span}\left\{e_{k} \cdots e_{k+h}\right\}$.

Now, on the basis of the above theorem, we study the existence and multiplicity of solutions for (1). For the nonlinear term f and λ, we consider the following assumptions:
$\left(f_{1}\right) f$ is a Carathéodory function, and $\sup _{|t| \leqslant r}|f(\cdot, t)| \in L^{\infty}(\Omega)$ for all $r>0$.
$\left(f_{2}\right) \lim _{|t| \rightarrow+\infty} f(x, t) / t=0$ uniformly with respect to a.e. $x \in \Omega$.
$\left(f_{3}\right) \lim _{t \rightarrow 0} f(x, t) / t=\lambda_{0} \in \mathbb{R}$ uniformly with respect to a.e. $x \in \Omega$.
$\left(\lambda_{1}\right) \lambda \notin \sigma\left(-\Delta_{\alpha}\right)$.
$\left(\lambda_{2}\right)\left(\Lambda_{2}\right)$ There exist $h, k \in \mathbb{N}$ with $k \geqslant h$ such that $\lambda_{0}+\lambda<\lambda_{h} \leqslant \lambda_{k} \leqslant \lambda$.
We use the saddle point theorem and the pseudoindex theory introduced in [2] to discuss the existence and multiplicity of solutions for (1). Next, we state the main results:

Theorem 2. Assume that the nonlinearity $f(x, u)$ satisfies $\left(f_{1}\right),\left(f_{2}\right)$ and λ satisfies $\left(\lambda_{1}\right)$. Then equation (1) has at least a nontrivial weak solution.

Theorem 3. Assume that the nonlinearity $f(x, u)$ satisfies $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{3}\right)$ and λ satisfies $\left(\lambda_{1}\right),\left(\lambda_{2}\right)$. Then equation (1) has at least $k-h+1$ distinct pairs of nontrivial weak solutions.

Remark 1. Note that we were motivated partly by Theorem 3.1 in [2]. Here the nonlinearity is no longer superlinear, and we use the saddle point theorem to establish the existence of a solution. Also, we present eigenvalue properties of the operator Δ_{α}.

2 Preliminaries

We recall the functional setting in [3, 4]. Consider the operator of the form $\Delta_{\alpha}:=$ $\sum_{i=1}^{N} \partial_{x_{i}}\left(\alpha_{i}^{2} \partial_{x_{i}}\right)$, where $\partial_{x_{i}}=\partial / \partial x_{i}, i=1, \ldots, N$. Here the function $\alpha_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is continuous, strictly positive and of C^{1} outside the coordinate hyperplane, i.e., $\alpha_{i} \geqslant 0$, $i=1 \ldots N$, in $\mathbb{R}^{N} \backslash \Pi$, where $\Pi=\left\{\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}: \Pi_{i=1}^{N} x_{i}=0\right\}$. As in [4], we assume that α_{i} satisfy the following properties:
(i) $\alpha_{1}(x) \equiv 1, \alpha_{i}(x)=\alpha_{i}\left(x_{1}, \ldots, x_{i-1}\right), i=1, \ldots, N$.
(ii) For every $x \in \mathbb{R}^{N}, \alpha_{i}(x)=\alpha_{i}\left(x^{*}\right), i=1, \ldots, N$, where $x^{*}=\left(\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right)$ if $x=\left(x_{1}, \ldots, x_{N}\right)$.
(iii) There exists a constant $\rho \geqslant 0$ such that $0 \leqslant x_{k} \partial_{x_{k}} \alpha_{i}(x) \leqslant \rho \alpha_{i}(x)$ for all $k \in\{1, \ldots, i-1\}, i=2, \ldots, N$, and for every $x \in \mathbb{R}_{+}^{N}:=\left\{\left(x_{1}, \ldots, x_{N}\right) \in\right.$ $\left.\mathbb{R}^{N}: x_{i} \geqslant 0 \forall i=1, \ldots, N\right\}$.
(iv) There exists a group of dilations $\left\{\delta_{t}\right\}_{t>0}, \delta_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, \delta_{t}(x)=\delta_{t}\left(x_{1}, \ldots\right.$, $\left.x_{N}\right)=\left(t^{\epsilon_{1}} x_{1}, \ldots, t^{\epsilon_{N}} x_{N}\right)$, where $1 \leqslant \epsilon_{1} \leqslant \epsilon_{2} \leqslant \cdots \leqslant \epsilon_{N}$ such that α_{i} is δ_{t}-homogeneous of degree ϵ_{i} - 1, i.e., $\alpha_{i}\left(\delta_{t}(x)\right)=t^{\epsilon_{i}-1} \alpha(x)$ for all $x \in \mathbb{R}^{N}$, $t>0, i=1, \ldots, N$. This implies that the operation Δ_{α} is δ_{t}-homogeneous of degree two, i.e., $\Delta_{\alpha}\left(u\left(\delta_{t}(x)\right)\right)=t^{2}\left(\Delta_{\alpha} u\right)\left(\delta_{t}(x)\right)$ for all $u \in C^{\infty}\left(\mathbb{R}^{N}\right)$.

We denote by Q the homogeneous dimension of \mathbb{R}^{N} with respect to the group of dilations $\left\{\delta_{t}\right\}_{t>0}$, i.e., $Q:=\epsilon_{1}+\cdots+\epsilon_{N}$. The homogeneous Q plays a crucial role, both in the geometry and in the functional associated with the operator Δ_{α}.
Proposition. (See [4].) Let Ω be a bounded domain in $\mathbb{R}^{N}(N>2)$. Then the embedding $W_{\alpha}^{1,2}(\Omega) \hookrightarrow L^{p}(\Omega)$ is compact for every $p \in\left[1,2_{\alpha}^{*}\right)$, where $2_{\alpha}^{*}=2 Q /(Q-2)$.

Remark 2. For all $s \in\left[1,2_{\alpha}^{*}\right)$, there exists a positive constant C_{s} such that

$$
\begin{equation*}
|u|_{s} \leqslant C_{s}\|u\| \tag{13}
\end{equation*}
$$

Theorem 4. (See [18].) Let $E=V \oplus X$, where E is a real Banach space, and $V \neq\{0\}$ is finite dimensional. Suppose that $I \in C^{1}(E, \mathbb{R})$ satisfies the (PS)-condition, and let
(i) there is a constant α and a bounded neighborhood D of 0 in V such that $\left.I\right|_{\partial D} \leqslant \alpha$;
(ii) there is a constant $\beta>\alpha$ such that $\left.I\right|_{X} \geqslant \beta$.

Then I possess a critical value $c \geqslant \beta$. Moreover, c can be characterized as $c=$ $\inf _{h \in \Gamma} \max _{u \in \bar{D}} I(h(u))$, where $\Gamma=\{h \in C(\bar{D}, E): h=i d$ on $\partial D\}$.

Let X be a Banach space,
$\Sigma=\Sigma(X)=\{A \subset X: A$ closed and symmetric w.r.t. the origin, i.e., $-u \in A$ if $u \in A\}$
and $\mathcal{H}=\{h \in C(X, X): h$ odd $\}$. Taking $A \in \Sigma, A \neq \emptyset$, the genus of A is $\gamma(A)=$ $\inf \left\{k \in \mathbb{N}^{*}: \exists \psi(-u)=-\psi(u) \forall u \in A\right\}$ if such an infimum exists, otherwise, $\gamma(A)=$ $+\infty$. Assume that $\gamma(\emptyset)=0$.
Theorem 5. (See [2].) Let H be a real Hilbert space, $J \in C^{1}(H, \mathbb{R})$ an even functional, $(\Sigma, \mathcal{H}, \gamma)$ an index theory on H. Let $S \in \Sigma$ and consider the pseudoindex theory ($S, \mathcal{H}^{*}, \gamma^{*}$), where $\mathcal{H}^{*}=\{h \in \mathcal{H}: h$ bounded homeomorphism s.t. $h(u)=u$ if $u \notin$ $\left.J^{-1}(] 0,+\infty[)\right\}$, and $\gamma^{*}=\min _{h \in \mathcal{H}^{*}} \gamma(h(A) \cap S)$ for all $A \in \Sigma$. Taking $a, b, c_{0}, c_{\infty} \in \bar{R}$, $-\infty \leqslant a<c_{0}<c_{\infty}<b \leqslant+\infty$, we assume that:
(i) the functional J satisfies $(P S)$ - condition in (a, b);
(ii) $S \subseteq J^{-1}\left(\left[c_{0},+\infty[)\right.\right.$;
(iii) there exist an integer $\bar{k} \geqslant 1$ and $\bar{A} \in \Sigma$ such that $\bar{A} \subset J^{c_{\infty}}$ and $\gamma^{*}(\bar{A}) \geqslant \bar{k}$.

Then the numbers $c_{i}=\inf _{A \in \Sigma_{i}} \sup _{u \in A} J(u), i \in\{1, \ldots, \bar{k}\}$, with $\Sigma_{i}=\left\{A \in \Sigma: \gamma^{*} \geqslant i\right\}$ are critical values for J and $c_{0} \leqslant c_{1} \leqslant \cdots \leqslant c_{\bar{k}} \leqslant c_{\infty}$. Furthermore, if $c=c_{i}=\cdots=$ c_{i+r} with $i \geqslant 1$ and $i+r \leqslant \bar{k}$, then $\gamma\left(K_{c}\right) \geqslant r+1$.

3 Proof of the theorems

Before proving Theorem 1, we define the functional $I: W_{\alpha}^{1,2} \rightarrow \mathbb{R}$ as follows:

$$
I(u)=\frac{1}{2} \int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x
$$

and

$$
\left\langle I^{\prime}(u), v\right\rangle=\int_{\Omega} \nabla_{\alpha} u \cdot \nabla_{\alpha} v \mathrm{~d} x=\langle u, v\rangle .
$$

In order to obtain Theorem 1, we prove the following lemmas.
Lemma 1. If $\mathcal{A} \neq \emptyset$ is a weakly closed subspace of $W_{\alpha}^{1,2}$ and $\mathcal{M}:=\left\{u \in \mathcal{A}:|u|_{2}=1\right\}$, then there exists $u_{0} \in \mathcal{M}$ such that

$$
\begin{equation*}
\min _{u \in \mathcal{M}} I(u)=I\left(u_{0}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle u_{0}, v\right\rangle=\int_{\Omega} \nabla_{\alpha} u_{0} \cdot \nabla_{\alpha} v \mathrm{~d} x=\lambda_{0} \int_{\Omega} u_{0} v \mathrm{~d} x \quad \forall v \in \mathcal{A}, \tag{15}
\end{equation*}
$$

where $\lambda_{0}:=2 I\left(u_{0}\right)>0$.
Proof. Let $\left\{u_{j}\right\}$ be the minimization sequence of I on \mathcal{M}, i.e., a sequence $u_{j} \in \mathcal{M}$ is such that

$$
\begin{equation*}
I\left(u_{j}\right) \rightarrow \inf _{u \in \mathcal{M}} I(u) \geqslant 0>-\infty \tag{16}
\end{equation*}
$$

as $j \rightarrow+\infty$. Then $I\left(u_{j}\right)$ is bounded in \mathbb{R}. From the definition of I we have that $\left\|u_{j}\right\|$ is bounded.

Note that $W_{\alpha}^{1,2}$ is a reflexive Banach space, and we have a subsequence still denoted as u_{j} and $u_{j} \rightharpoonup u_{0}$ in $W_{\alpha}^{1,2}$ for some $u_{0} \in \mathcal{A}$. Thus,

$$
\int_{\Omega} \nabla_{\alpha} u_{j} \cdot \nabla_{\alpha} v \mathrm{~d} x \rightarrow \int_{\Omega} \nabla_{\alpha} u_{0} \cdot \nabla_{\alpha} v \mathrm{~d} x \quad \forall v \in W_{\alpha}^{1,2}, \quad j \rightarrow+\infty .
$$

From $\left\|u_{j}\right\|$ bounded and the embedding theorem we have $u_{j} \rightarrow u_{0}$ in $L^{2}(\Omega)$ as $j \rightarrow \infty$. Then $\left|u_{0}\right|_{2}=1, u_{0} \in \mathcal{M}$. By the weak lower semicontinuity we have

$$
\begin{aligned}
\lim _{j \rightarrow+\infty} I\left(u_{j}\right) & =\frac{1}{2} \lim _{j \rightarrow+\infty} \int_{\Omega}\left|\nabla_{\alpha} u_{j}\right|^{2} \mathrm{~d} x \geqslant \frac{1}{2} \int_{\Omega}\left|\nabla_{\alpha} u_{0}\right|^{2} \mathrm{~d} x \\
& =I\left(u_{0}\right) \geqslant \inf _{u \in \mathcal{M}} I(u)
\end{aligned}
$$

Therefore, from (16) $I\left(u_{0}\right)=\inf _{u \in \mathcal{M}} I(u)$. Hence, (14) is established.

Next, we let $\varepsilon \in(-1,1), v \in \mathcal{M}, c_{\varepsilon}:=\left|u_{0}+\varepsilon v\right|_{2}$ and $u_{\varepsilon}:=\left(u_{0}+\varepsilon v\right) / c_{\varepsilon}$. We have that $u_{\varepsilon} \in \mathcal{M}$, and according to $\left|u_{0}\right|_{2}=1$, we get

$$
\begin{aligned}
2 J\left(u_{\varepsilon}\right) & =\int_{\Omega}\left|\nabla_{\alpha} u_{\varepsilon}\right|^{2} \mathrm{~d} x=\int_{\Omega}\left|\nabla_{\alpha} \frac{u_{0}+\varepsilon v}{c_{\varepsilon}}\right|^{2} \mathrm{~d} x=\frac{\left\|u_{0}+\varepsilon v\right\|^{2}}{c_{\varepsilon}^{2}} \\
& =\frac{\left\langle u_{0}+\varepsilon v, u_{0}+\varepsilon v\right\rangle}{\left(\int_{\Omega}\left|u_{0}+\varepsilon v\right|^{2} \mathrm{~d} x\right)^{2}}=\frac{\left\|u_{0}\right\|^{2}+2 \varepsilon\left\langle u_{0}, v\right\rangle+o(\varepsilon)}{\left|u_{0}\right|_{2}^{2}+2 \varepsilon \int_{\Omega} u_{0}(x) v(x) \mathrm{d} x+o(\varepsilon)} \\
& =\left(2 I\left(u_{0}\right)+2 \varepsilon\left\langle u_{0}, \varepsilon\right\rangle+o(\varepsilon)\right)\left(1-2 \int_{\Omega} u_{0}(x) v(x) \mathrm{d} x+o(\varepsilon)\right) \\
& =2 I\left(u_{0}\right)+2 \varepsilon\left(\left\langle u_{0}, v\right\rangle-2 I\left(u_{0}\right) \int_{\Omega} u_{0}(x) v(x) \mathrm{d} x\right)+o(\varepsilon)
\end{aligned}
$$

Note the minimum value of u_{0}, and we have (15). The proof is complete.
Lemma 2. Let $\lambda \neq \bar{\lambda}$ be different eigenvalues of problem (4) with eigenfunctions e and $\bar{e} \in W_{\alpha}^{1,2}$. Then

$$
\langle e, \bar{e}\rangle=0=\int_{\Omega} e(x) \bar{e}(x) \mathrm{d} x
$$

Proof. If $e=0$ or $\bar{e}=0$, then the proof is complete. Now we consider the case when $e \neq 0$ and $\bar{e} \neq 0$. First, consider the characteristic function $f:=e /|e|_{2}$ and $\bar{f}:=\bar{e} /|\bar{e}|_{2}$. Substitute f, \bar{f} into (4), and we have

$$
\begin{equation*}
\lambda \int_{\Omega} f(x) \bar{f}(x) \mathrm{d} x=\int_{\Omega}\left|\nabla_{\alpha} f\right| \cdot\left|\nabla_{\alpha} \bar{f}\right| \mathrm{d} x=\bar{\lambda} \int_{\Omega} f(x) \bar{f}(x) \mathrm{d} x \tag{17}
\end{equation*}
$$

and then

$$
(\lambda-\bar{\lambda}) \int_{\Omega} f(x) \bar{f}(x) \mathrm{d} x=0
$$

Note that $\lambda \neq \bar{\lambda}$, we obtain

$$
\begin{equation*}
\int_{\Omega} f(x) \bar{f}(x) \mathrm{d} x=0 \tag{18}
\end{equation*}
$$

Combine (17) and (18), and we get

$$
\left\langle\frac{e}{|e|_{2}}, \frac{\bar{e}}{|\bar{e}|_{2}}\right\rangle=\langle f, \bar{f}\rangle=\int_{\Omega}\left|\nabla_{\alpha} f\right| \cdot\left|\nabla_{\alpha} \bar{f}\right| \mathrm{d} x=0
$$

Thus, $\langle e, \bar{e}\rangle=0$ is established. The proof is complete.
Lemma 3. If e is an eigenfunction of (4), the corresponding eigenvalue is λ, then

$$
\int_{\Omega}\left|\nabla_{\alpha} e\right|^{2} \mathrm{~d} x=\lambda|e|_{2}^{2}
$$

Proof. In (4), replacing v by e, we obtain

$$
\int_{\Omega}\left|\nabla_{\alpha} e\right|^{2} \mathrm{~d} x=\lambda \int_{\Omega} \mathrm{e}^{2} \mathrm{~d} x .
$$

The proof is complete.
Proof of Theorem 1. (i) According to Lemma 1 (choosing $\mathcal{A}:=W_{\alpha}^{1,2}$), we obtain that there is a λ_{1}, i.e.,

$$
\lambda_{1}=\min _{\substack{|u|_{2}=1 \\ u \in W_{\alpha}^{1,2}}} \int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x
$$

Moreover, it is an eigenvalue.
(ii) For this, we get that e_{1} is an eigenfunction corresponding to λ_{1} by (15). Hence (with $\mathcal{A}:=W_{\alpha}^{1,2}$ in Lemma 1), (6) is established. It can be seen from (14) that the minimum λ_{1} is attained at some $e_{1} \in W_{\alpha}^{1,2}$, where $\left|e_{1}\right|_{2}=1$. To complete the proof of (ii), we first show that if e is an eigenfunction corresponding to λ_{1}, with $|e|_{2}=1$, then both e and $|e|$ attain the minimum in (5), also, either $e \geqslant 0$ or $e \leqslant 0$ a.e. in Ω. From Lemma 3 and (6) we obtain

$$
2 I(e)=\int_{\Omega}\left|\nabla_{\alpha} e\right|^{2} \mathrm{~d} x=\lambda_{1}=2 I\left(e_{1}\right)
$$

Also, we get $I(|e|)=I(e)=I\left(e_{1}\right)$, where $|e| \in W_{\alpha}^{1,2}$ and $\|e\|^{2}=\lambda_{1}$, and either $\{e>0\}$ or $\{e<0\}$ has zero measure. Hence, by replacing e with e_{1}, we obtain that $e_{1} \geqslant 0$. Thus, there exists a function $e_{1} \in W_{\alpha}^{1,2}$ with $e_{1} \geqslant 0$ and is an eigenfunction relative to λ_{1}, attaining the minimum in (4).
(iii) Assume that λ_{1} also corresponds to another eigenfunction u in $W_{\alpha}^{1,2}$ with $0 \neq u$ and $u \neq e_{1}$. It follows from the proof of (ii) that $u \geqslant 0$ or $u \leqslant 0$ a.e. in Ω. First, consider the case $u \geqslant 0$ a.e. in Ω. We set

$$
g:=\frac{u}{|u|_{2}}, \quad g_{1}:=e_{1}-g .
$$

Next, we prove that

$$
\begin{equation*}
g_{1}(x)=0 \quad \text { a.e. } x \in \Omega . \tag{19}
\end{equation*}
$$

Suppose that $g_{1}(x) \neq 0$ a.e. $x \in \Omega$, and we can conclude that g_{1} is an eigenfunction corresponding to λ_{1}. Using the proof of (ii) again, we get that $g_{1} \geqslant 0$ or $g_{1} \leqslant 0$ a.e. in Ω. Thus, either $e_{1} \geqslant g$ or $e_{1} \leqslant g$. From $e_{1} \geqslant 0$ we have one of the following:

$$
e_{1}^{2} \geqslant g^{2} \quad \text { or } \quad e_{1}^{2} \leqslant g^{2} \quad \text { a.e. in } \Omega .
$$

Also,

$$
\int_{\Omega}\left(e_{1}^{2}(x)-g^{2}(x)\right) \mathrm{d} x=\left|e_{1}\right|_{2}^{2}-|g|_{2}^{2}=0
$$

According to the above, we get $e_{1}^{2}-g^{2}=0$, so $e_{1}=g$. Hence, $g_{1}=0$ a.e. in Ω. That is a contradiction, so (19) is established. Therefore, f_{1} is proportional to e_{1}, i.e. $u=\xi e_{1}$, $\xi \in \mathbb{R}$. The situation when $u \leqslant 0$ a.e. in Ω is similar.
(iv) By Lemma 1 (choosing $\mathcal{A}:=\mathbb{P}_{k+1}$) we see that there exists λ_{k+1} such that (9) holds, and it is attained at some $e_{k+1} \in \mathbb{P}_{k+1}$. Also, from $\mathbb{P}_{k+1} \subseteq \mathbb{P}_{k} \subseteq W_{\alpha}^{1,2}$ we have

$$
0<\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{k} \leqslant \lambda_{k+1}
$$

First, we prove (7). In fact, we show $\lambda_{1} \neq \lambda_{2}$. Indeed, if $\lambda_{1}=\lambda_{2}$ and $e_{2} \in \mathbb{P}_{2}$ also is an eigenfunction relative to λ_{1}, from (iii) we get that $e_{2}=\xi e_{1}$ with $\xi \in \mathbb{R}$ and $\xi \neq 0$ so $e_{2} \neq 0$. From $e_{2} \in \mathbb{P}_{2}$ we have

$$
0=\left\langle e_{1}, e_{2}\right\rangle=\left\langle e_{1}, \xi e_{1}\right\rangle=\xi\left\|e_{1}\right\|^{2}
$$

We conclude that $e_{1}=0$, which is a contradiction.
Now apply (15) with $\mathcal{A}=\mathbb{P}_{k+1}$, and we have

$$
\begin{equation*}
\int_{\Omega} \nabla_{\alpha} e_{k+1} \cdot \nabla_{\alpha} v \mathrm{~d} x=\lambda_{k+1} \int_{\Omega} e_{k+1}(x) v(x) \mathrm{d} x \quad \forall v \in \mathbb{P}_{k+1} \tag{20}
\end{equation*}
$$

In order to show that λ_{k+1} is an eigenvalue with eigenfunction e_{k+1}, we need to show that the above formula holds for any $v \in W_{\alpha}^{1,2}$ not only in \mathbb{P}_{k+1}. We define

$$
X_{1}=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}, \quad X_{2}=X_{1}^{\perp}=\mathbb{P}_{k+1}, \quad W_{\alpha}^{1,2}=X_{1} \oplus X_{2}
$$

Hence, for any $v \in W_{\alpha}^{1,2}, v:=v_{1}+v_{2}$, where $v_{2} \in \mathbb{P}_{k+1}$, and $v_{1}=\sum_{j=1}^{k} c_{j} e_{j}$ for some $c_{1}, \ldots, c_{k} \in \mathbb{R}$. Put $v_{2}=v-v_{1}$ into (20), and with the definition of v_{1} we deduce

$$
\begin{align*}
\int_{\Omega} & \nabla_{\alpha} e_{k+1} \cdot \nabla_{\alpha} v \mathrm{~d} x-\lambda_{k+1} \int_{\Omega} e_{k+1}(x) v(x) \mathrm{d} x \\
& =\int_{\Omega} \nabla_{\alpha} e_{k+1} \cdot \nabla_{\alpha} v_{1} \mathrm{~d} x-\lambda_{k+1} \int_{\Omega} e_{k+1}(x) v_{1}(x) \mathrm{d} x \\
& =\sum_{j=1}^{k} c_{j}\left[\int_{\Omega} \nabla_{\alpha} e_{k+1} \cdot \nabla_{\alpha} e_{j} \mathrm{~d} x-\lambda_{k+1} \int_{\Omega} e_{k+1}(x) e_{j}(x) \mathrm{d} x\right] . \tag{21}
\end{align*}
$$

Test the eigenvalue equation (4) for e_{j} against e_{k+1} for $j=1, \ldots, k$, furthermore, $e_{k+1} \in$ \mathbb{P}_{k+1}, and we have

$$
0=\int_{\Omega} \nabla_{\alpha} e_{k+1} \cdot \nabla_{\alpha} e_{j} \mathrm{~d} x=\lambda_{j} \int_{\Omega} e_{k+1}(x) e_{j}(x) \mathrm{d} x,
$$

so

$$
0=\int_{\Omega} \nabla_{\alpha} e_{k+1} \cdot \nabla_{\alpha} e_{j} \mathrm{~d} x=\int_{\Omega} e_{k+1}(x) e_{j}(x) \mathrm{d} x \quad \forall j=1, \ldots, k
$$

Putting the above formula into (21), we deduce that (20) is established for any $v \in W_{\alpha}^{1,2}$. Hence λ_{k+1} is an eigenvalue with eigenfunction e_{k+1}.

Next, in order to obtain (8), we prove that if $k, h \in \mathbb{N}, k \neq h$, then $\left\langle e_{k}, e_{h}\right\rangle=0=$ $\int_{\Omega} e_{k}(x) e_{h}(x) \mathrm{d} x$. In fact, let $k>h$, then $k-1 \geqslant h$, and

$$
e_{k} \in \mathbb{P}_{k}=\left(\operatorname{span}\left\{e_{1}, \ldots, e_{k-1}\right\}\right)^{\perp} \subseteq\left(\operatorname{span}\left\{e_{h}\right\}\right)^{\perp}
$$

Then $\left\langle e_{k}(x), e_{h}(x)\right\rangle=0$. However, e_{k} is an eigenfunction. We substitute e_{k} into (4) and replace v with e_{h}, and we have

$$
\int_{\Omega} \nabla_{\alpha} e_{k} \cdot \nabla_{\alpha} e_{h} \mathrm{~d} x=\lambda_{k} \int_{\Omega} e_{k} e_{h} \mathrm{~d} x
$$

so $\left\langle e_{k}, e_{h}\right\rangle=0=\int_{\Omega} e_{k}(x) e_{h}(x) \mathrm{d} x$. To prove $\lambda_{k} \rightarrow+\infty$, we assume $\lambda_{k} \rightarrow c, k \rightarrow$ $+\infty$ for some $c \in \mathbb{R}$, so λ_{k} is bounded in \mathbb{R}. By Lemma 3 we get $\left\|e_{k}\right\|^{2}=\lambda_{k}$, and there exists a subsequence $\left\{e_{k_{j}}\right\}$ and some $e_{\infty} \in L^{2}(\Omega)$ with

$$
e_{k_{j}} \rightarrow e_{\infty} \quad \text { in } L^{2}(\Omega) \text { as } k_{j} \rightarrow \infty
$$

According to the previous analysis, we see that $e_{k_{j}}$ and $e_{k_{i}}$ are orthogonal in $L^{2}(\Omega)$, and we get

$$
\left|e_{k_{j}}-e_{k_{i}}\right|^{2}=\left|e_{k_{j}}\right|^{2}+\left|e_{k_{i}}\right|^{2}=2 .
$$

We have a contradiction since $e_{k_{j}}$ is a Cauchy sequence in $L^{2}(\Omega)$. Thus, (8) is established.

Finally, we show (9). Suppose that there exists an eigenvalue $\lambda \notin\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$, and let $e \in$ $W_{\alpha}^{1,2}$ be an eigenfunction corresponding to λ, so $|e|_{2}=1$ is obtained by normalization. According to Lemma 3, we get

$$
\begin{equation*}
2 I(e)=\int_{\Omega}\left|\nabla_{\alpha} e\right|^{2} \mathrm{~d} x=\lambda . \tag{22}
\end{equation*}
$$

Also, by (5) and (6) we have

$$
\lambda=2 I(e) \geqslant 2 I\left(e_{1}\right)=\lambda_{1} .
$$

From $\lambda \notin\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ and (8) we see that there exists $k \in \mathbb{N}$ such that

$$
\lambda_{k}<\lambda<\lambda_{k+1} .
$$

Assume that $e \in \mathbb{P}_{k+1}$ and (22) and (9) imply that $\lambda=2 I(e) \geqslant \lambda_{k+1}$, which is a contradiction. Thus, we have $e \notin \mathbb{P}_{k+1}$, and there exists $j \in\{1, \ldots, k\}$ such that $\left\langle e, e_{j}\right\rangle \neq 0$, so this contradicts Lemma 2. This completes the proof of (iv).
(v) Apply Lemma 1 , let \mathcal{A} be replaced by \mathbb{P}_{k+1}, and the minimum defining λ_{k+1} is attained for some $e_{k+1} \in \mathbb{P}_{k+1}$. By Lemma 1 we have (11). According to the proof of (iv), we see that (21) holds for any $v \in W_{\alpha}^{1,2}$, so we can conclude that e_{k+1} is an eigenfunction relative to λ_{k+1}. This completes the proof of (v).
(vi) From the proof of (iv) we see that the sequence $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ of eigenfunctions corresponding to λ_{k} is an orthonormal basis. Next, to complete the proof of (vi), we claim that the $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ is a basis for both $W_{\alpha}^{1,2}$ and $L^{2}(\Omega)$.

First, we prove that it is a basis of $W_{\alpha}^{1,2}$. We prove that if $v \in W_{\alpha}^{1,2}$ is such that for all $k \in \mathbb{N},\left\langle v, e_{k}\right\rangle=0$, then $v \equiv 0$. Assume that $v \neq 0$ and there exists a nontrivial $v \in W_{\alpha}^{1,2}$ such that for all $k \in \mathbb{N},\left\langle v, e_{k}\right\rangle=0$, and by normalization we assume that $|v|_{2}=1$. Therefore, from (8) there exists a $k \in \mathbb{N}$ such that

$$
2 I(v)<\lambda_{k+1}=\min _{\substack{|u|_{2}=1 \\ u \in \mathbb{P}_{k+1}}} \int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x
$$

We see $v \notin \mathbb{P}_{k+1}$ and there exists $j \in \mathbb{N}$ such that $\left\langle v, e_{j}\right\rangle \neq 0$. This contradicts the assumption. Now we define $E_{i}:=e_{i} /\left\|e_{i}\right\|$, and let $g \in W_{\alpha}^{1,2}, g_{j}:=\sum_{i=1}^{j}\left\langle g, E_{i}\right\rangle E_{i}$. Also, $g_{j} \in \operatorname{span}\left\{e_{1}, \ldots, e_{j}\right\}$ for all $j \in \mathbb{N}$. Define $G_{j}:=g-g_{j}$, and by the orthogonality of $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ in $W_{\alpha}^{1,2}$

$$
\begin{aligned}
0 & \leqslant\left\|G_{j}\right\|^{2}=\left\langle G_{j}, G_{j}\right\rangle=\left\langle g-g_{j},-g_{j}\right\rangle \\
& =\|g\|^{2}+\left\|g_{j}\right\|^{2}-2\left\langle g, g_{j}\right\rangle=\|g\|^{2}+\left\langle g_{j}, g_{j}\right\rangle-2\left\langle g, \sum_{i=1}^{j}\left\langle g, E_{i}\right\rangle E_{i}\right\rangle \\
& =\|g\|^{2}-2 \sum_{i=1}^{j}\left\langle g, E_{i}\right\rangle^{2} .
\end{aligned}
$$

Then $2 \sum_{i=1}^{j}\left\langle g, E_{i}\right\rangle^{2} \leqslant\|g\|^{2}$ for all $j \in \mathbb{N}$. We deduce that $\sum_{i=1}^{+\infty}\left\langle g, E_{i}\right\rangle^{2}$ is a convergent series. Now we assume that $\omega_{j}:=\sum_{i=1}^{j}\left\langle g, E_{i}\right\rangle^{2}$, and since ω_{j} is a convergent series, it is a Cauchy sequence in \mathbb{R}. Also, from the orthogonality of $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ in $W_{\alpha}^{1,2}$ we get

$$
\begin{aligned}
\left\|G_{j}-G_{J}\right\|^{2} & =\left\|g_{J}-g_{j}\right\|^{2}=\left\|\sum_{i=j+1}^{J}\left\langle g, E_{i}\right\rangle E_{i}\right\|^{2} \\
& =\sum_{i=j+1}^{J}\left\langle g, E_{i}\right\rangle^{2}=\omega_{J}-\omega_{j} \quad \text { if } J>j
\end{aligned}
$$

We obtain that G_{j} is a Cauchy sequence in $W_{\alpha}^{1,2}$, and by the completeness of $W_{\alpha}^{1,2}$ there exists a $G \in W_{\alpha}^{1,2}$ such that

$$
\begin{equation*}
G_{j} \rightarrow G \quad \text { in } W_{\alpha}^{1,2}, j \rightarrow \infty \tag{23}
\end{equation*}
$$

Moreover,

$$
\left\langle G_{j}, E_{k}\right\rangle=\left\langle g, E_{k}\right\rangle-\left\langle g_{j}, E_{k}\right\rangle=\left\langle g, E_{k}\right\rangle-\left\langle g, E_{k}\right\rangle=0 .
$$

From (23), for any $k \in \mathbb{N}$, we have $\left\langle G, E_{k}\right\rangle=0$, that is, $G=0$. Hence,

$$
g_{j} \rightarrow g \quad \text { as } j \rightarrow \infty \text { in } W_{\alpha}^{1,2}
$$

Finally, we prove that $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ is a basis for $L^{2}(\Omega)$. Let $v \in L^{2}(\Omega)$ and $v_{j} \in C_{0}^{1}(\Omega)$ such that $\left|v_{j}-v\right|_{2} \leqslant 1 / j$. From $C_{0}^{1}(\Omega) \subseteq W_{\alpha}^{1,2}$ it follows that $v_{j} \in W_{\alpha}^{1,2}$. Since $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ is a basis for $W_{\alpha}^{1,2}$, hence there exists $k_{j} \in \mathbb{N}$ and function μ_{j}, and $\mu_{j} \in \operatorname{span}\left\{e_{1}, \ldots, e_{k_{j}}\right\}$ such that $\left\|v_{j}-\mu_{j}\right\| \leqslant 1 / j$. Thus,

$$
\left|v_{j}-\mu_{j}\right|_{2} \leqslant C\left\|v_{j}-\mu_{j}\right\| \leqslant \frac{C}{j}
$$

and

$$
\left|v-\mu_{j}\right|_{2} \leqslant\left|v-v_{j}\right|_{2}+\left|v_{j}-\mu_{j}\right|_{2} \leqslant \frac{C+1}{j}
$$

Therefore, the sequence $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ of eigenfunctions of (4) is a basis in $L^{2}(\Omega)$.
(vii) Consider some $h \in \mathbb{N}_{0}$ such that $\lambda_{k-1}<\lambda_{k}=\cdots=\lambda_{k+h}<\lambda_{k+h+1}$. We let

$$
W_{\alpha}^{1,2}=\operatorname{span}\left\{e_{k}, \ldots, e_{k+h}\right\} \oplus\left(\operatorname{span}\left\{e_{k}, \ldots, e_{k+h}\right\}\right)^{\perp}
$$

and $\phi=\phi_{1}+\phi_{2}$, where $\phi_{1} \in \operatorname{span}\left\{e_{k}, \ldots, e_{k+h}\right\}$, and $\phi_{2} \in\left(\operatorname{span}\left\{e_{k}, \ldots, e_{k+h}\right\}\right)^{\perp}$. We have

$$
\begin{equation*}
\left\langle\phi_{1}, \phi_{2}\right\rangle=0 . \tag{24}
\end{equation*}
$$

Since ϕ is an eigenfunction relative to λ_{k}, substituting ϕ into (4), from (24) we have

$$
\begin{equation*}
\left\|\phi_{1}\right\|^{2}+\left\|\phi_{2}\right\|^{2}=\|\phi\|^{2}=\int_{\Omega}\left|\nabla_{\alpha} \phi\right|^{2} \mathrm{~d} x=\lambda_{k} \int_{\Omega} \phi^{2} \mathrm{~d} x . \tag{25}
\end{equation*}
$$

According to (v), we have that e_{k}, \ldots, e_{k+h} are eigenfunctions relative to $\lambda_{k}=\cdots=$ λ_{k+h} and ϕ is also an eigenfunction corresponding to λ_{k}. Hence, substituting both ϕ_{1} and ϕ_{2} into (4), we have

$$
\lambda_{k} \int_{\Omega} \phi_{1} \phi_{2} \mathrm{~d} x=\int_{\Omega}\left|\nabla_{\alpha} \phi_{1}\right| \cdot\left|\nabla_{\alpha} \phi_{2}\right| \mathrm{d} x=\left\langle\phi_{1}, \phi_{2}\right\rangle=0 \quad \Longrightarrow \quad \int_{\Omega} \phi_{1} \phi_{2} \mathrm{~d} x=0
$$

and

$$
\begin{equation*}
\left|\phi_{1}\right|_{2}^{2}=\left|\phi_{1}+\phi_{2}\right|_{2}^{2}=\left|\phi_{1}\right|_{2}^{2}+\left|\phi_{2}\right|_{2}^{2} \tag{26}
\end{equation*}
$$

Let

$$
\phi_{1}=\sum_{i=k}^{k+h} c_{j} e_{j}, \quad c_{j} \in \mathbb{R}
$$

By (v) and the orthogonality in (vi) we have

$$
\begin{align*}
\left\|\phi_{1}\right\|^{2} & =\left\langle\phi_{1}, \phi_{1}\right\rangle=\sum_{j=k}^{k+h}\left\langle c_{j} e_{j}, c_{j} e_{j}\right\rangle=\sum_{j=k}^{k+h} c_{j}^{2}\left\|e_{j}\right\|^{2} \\
& =\sum_{j=k}^{k+h} c_{j}^{2} \lambda_{j}=\lambda_{k} \sum_{j=k}^{k+h} c_{j}^{2}=\lambda_{k}\left|\phi_{1}\right|_{2}^{2} \tag{27}
\end{align*}
$$

Since ϕ_{1} and ϕ are eigenfunctions corresponding to λ_{k}, hence we deduce that ϕ_{2} is also an eigenfunction corresponding to λ_{k}. From Lemma 2 and (12) we get

$$
\left\langle\phi_{2}, e_{1}\right\rangle=\left\langle\phi_{2}, e_{2}\right\rangle=\cdots=\left\langle\phi_{2}, e_{k-1}\right\rangle=0
$$

and

$$
\phi_{2} \in\left(\operatorname{span}\left\{e_{k}, \ldots, e_{k+h}\right\}\right)^{\perp}=\mathbb{P}_{k+h+1}
$$

Now we prove that $\phi_{2}=0$ via contradiction. If $\phi_{2} \neq 0$, from (10)

$$
\begin{equation*}
\lambda_{k}<\lambda_{k+h+1}=\min _{u \in \mathbb{P}_{k+h+1} \backslash\{0\}} \frac{\int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x}{\int_{\Omega}|u|^{2} \mathrm{~d} x} \leqslant \frac{\int_{\Omega}\left|\nabla_{\alpha} \phi_{2}\right|^{2} \mathrm{~d} x}{\int_{\Omega}\left|\phi_{2}\right|^{2} \mathrm{~d} x}=\frac{\left\|\phi_{2}\right\|^{2}}{\left|\phi_{2}\right|_{2}^{2}} \tag{28}
\end{equation*}
$$

Also, from (25)-(28) we have

$$
\lambda_{k}|\phi|_{2}^{2}=\left\|\phi_{1}\right\|^{2}+\left\|\phi_{2}\right\|^{2}>\lambda_{k}\left|\phi_{1}\right|_{2}^{2}+\lambda_{k}\left|\phi_{2}\right|_{2}^{2}=\lambda_{k}|\phi|_{2}^{2}
$$

This is a contradiction. Therefore, we deduce that $\phi=\phi_{1} \in \operatorname{span}\left\{e_{k}, \ldots, e_{k+h}\right\}$. The proof is complete.

Now we define the following energy functional:

$$
J_{\lambda}(u)=\frac{1}{2} \int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x-\frac{\lambda}{2} \int_{\Omega} u^{2} \mathrm{~d} x-\int_{\Omega} F(x, u) \mathrm{d} x
$$

where $F(x, u)=\int_{0}^{u} f(x, t) \mathrm{d} t$. From the hypotheses on f we observe that J_{λ} is well defined on $W_{\alpha}^{1,2}(\Omega)$ and $J_{\lambda} \in C^{1}\left(W_{\alpha}^{1,2}(\Omega), \mathbb{R}\right)$ with

$$
\begin{equation*}
\left\langle J_{\lambda}^{\prime}(u), v\right\rangle=\int_{\Omega} \nabla_{\alpha} u \nabla_{\alpha} v \mathrm{~d} x-\lambda \int_{\Omega} u v \mathrm{~d} x-\int_{\Omega} f(x, u) v \mathrm{~d} x \quad \forall v \in W_{\alpha}^{1,2} \tag{29}
\end{equation*}
$$

To establish Theorems 2 and 3, we first provide the following lemmas, which shows that the (PS)-condition is satisfied.

Lemma 4. Let $\left(f_{1}\right),\left(f_{2}\right)$ be satisfied. Then any (PS)-sequence $\left\{u_{j}\right\}$ of J_{λ} is bounded in $W_{\alpha}^{1,2}$.
Proof. Let $\left\{u_{j}\right\} \subset W_{\alpha}^{1,2}$ be a (PS)-sequence such that

$$
\begin{equation*}
J_{\lambda}\left(u_{j}\right) \leqslant c, \quad J_{\lambda}^{\prime}\left(u_{j}\right) \rightarrow 0 \tag{30}
\end{equation*}
$$

and then we have

$$
\begin{equation*}
\left\langle u_{j}, \varphi\right\rangle-\lambda \int_{\Omega} u_{j} \varphi \mathrm{~d} x-\int_{\Omega} f\left(x, u_{j}\right) \varphi \mathrm{d} x=o(1) \quad \forall \varphi \in W_{\alpha}^{1,2} \tag{31}
\end{equation*}
$$

From $\left(f_{1}\right)$ and $\left(f_{2}\right)$, for all $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
|f(x, t)| \leqslant \varepsilon|t|+C_{\varepsilon} \quad \text { a.e. } x \in \Omega \forall t \in \mathbb{R} \tag{32}
\end{equation*}
$$

Assume that $\left\|u_{j}\right\| \rightarrow \infty$ as $j \rightarrow \infty$. Set $v_{j}:=u_{j} /\left\|u_{j}\right\|$, and then $\left\|v_{j}\right\|=1$. Thus, we have $v_{j} \rightharpoonup v$ in $W_{\alpha}^{1,2}, v_{j} \rightarrow v$ in L^{p} for $1 \leqslant p<2_{\alpha}^{*}$. In (31), φ is replaced by $v_{j}-v$, and dividing by $\left\|u_{j}\right\|$, one has

$$
\left\langle v_{j}, v_{j}-v\right\rangle=\lambda \int_{\Omega} v_{j}\left(v_{j}-v\right) \mathrm{d} x+\int_{\Omega} \frac{f\left(x, u_{j}\right)}{\left\|u_{j}\right\|}\left(v_{j}-v\right) \mathrm{d} x+o(1)
$$

From $v_{j} \rightarrow v$ in L^{p} for $1 \leqslant p<2_{\alpha}^{*}$ and Hölder's inequality we have

$$
\begin{equation*}
\left|\int_{\Omega} v_{j}\left(v_{j}-v\right) \mathrm{d} x\right| \leqslant\left|v_{j}\right|_{2}\left|v_{j}-v\right|_{2}=o(1) \tag{33}
\end{equation*}
$$

Moreover, from (32) we have that

$$
\begin{align*}
\left|\int_{\Omega} \frac{f\left(x, u_{j}\right)}{\left\|u_{j}\right\|}\left(v_{j}-v\right) \mathrm{d} x\right| & \leqslant\left|\int_{\Omega}\left(\varepsilon v_{j}+\frac{C_{\varepsilon}}{\left\|u_{j}\right\|}\right)\left(v_{j}-v\right) \mathrm{d} x\right| \\
& \leqslant \varepsilon\left|v_{j}\right|_{2}\left|v_{j}-v\right|_{2}+C_{\varepsilon} \frac{\left|v_{j}-v\right|_{1}}{\left\|u_{j}\right\|} \\
& =o(1) . \tag{34}
\end{align*}
$$

Hence, from (33), (34), we get $\left\langle v_{j}, v_{j}-v\right\rangle=o(1)$. Thus, $v_{j} \rightarrow v$ strongly in $W_{\alpha}^{1,2}$. If $v=0$, we obtain $\left\|v_{j}\right\| \rightarrow 0$, a contradiction. Hence, $v \neq 0$. Now, dividing (31) by $\left\|u_{j}\right\|$, we obtain

$$
\begin{equation*}
\left\langle v_{j}, \varphi\right\rangle-\lambda \int_{\Omega} v_{j} \varphi \mathrm{~d} x-\int_{\Omega} \frac{f\left(x, u_{j}\right) \varphi}{\left\|u_{j}\right\|} \mathrm{d} x=o(1) \tag{35}
\end{equation*}
$$

From $\left(f_{2}\right)$ we have

$$
\lim _{j \rightarrow+\infty} \int_{\Omega} \frac{f\left(x, u_{j}\right) \varphi}{\left\|u_{j}\right\|} \mathrm{d} x=\lim _{j \rightarrow+\infty} \int_{\Omega} \frac{f\left(x, u_{j}\right)}{u_{j}} v_{j} \varphi \mathrm{~d} x=0
$$

Passing to the limit in (35), from $v_{j} \rightarrow v$ strongly in $W_{\alpha}^{1,2}$ we have that $\langle v, \varphi\rangle=$ $\lambda \int_{\Omega} v \varphi \mathrm{~d} x$ for all $\varphi \in W_{\alpha}^{1,2}$. This implies that $\lambda \in \sigma\left(-\Delta_{\alpha}\right)$, which contradicts $\left(\lambda_{1}\right)$. Therefore, $\left\{u_{j}\right\}$ is a bounded sequence.

Lemma 5. Let $\left(f_{1}\right),\left(f_{2}\right)$ be satisfied. Then any (PS)-sequence $\left\{u_{j}\right\}$ has a convergent subsequence.

Proof. We see that $\left\{u_{j}\right\}$ is bounded in $W_{\alpha}^{1,2}$, and therefore, we can assume that there is a subsequence, still denoted by $\left\{u_{j}\right\}$ and there exists $u_{1} \in W_{\alpha}^{1,2}$ such that $u_{j} \rightharpoonup u_{1}$ in $W_{\alpha}^{1,2}$ and $u_{j} \rightarrow u_{1}$ in L^{p} for all $p \in\left[1,2_{\alpha}^{*}\right.$). From (29) and (30) we get

$$
\begin{equation*}
\left\langle J_{\lambda}^{\prime}\left(u_{j}\right), u_{j}-u_{1}\right\rangle \rightarrow 0, \quad j \rightarrow+\infty . \tag{36}
\end{equation*}
$$

Moreover, from (32) and the Hölder inequality we have

$$
\begin{aligned}
\int_{\Omega}\left|f\left(x, u_{j}\right)\right|\left|u_{j}-u_{1}\right| \mathrm{d} x & \leqslant \int_{\Omega}\left(\varepsilon\left|u_{j}\right|+C_{\varepsilon}\right)\left|u_{j}-u_{1}\right| \mathrm{d} x \\
& \leqslant \varepsilon\left|u_{j}\right|_{2}\left|u_{j}-u_{1}\right|_{2}+C_{\varepsilon}\left|u_{j}-u_{1}\right|_{1} \rightarrow 0, \quad j \rightarrow+\infty
\end{aligned}
$$

Therefore, from (29) and (36) it follows that

$$
\begin{aligned}
\left\langle J_{\lambda}^{\prime}\left(u_{j}-u_{1}\right), u_{j}-u_{1}\right\rangle= & \int_{\Omega}\left|\nabla_{\alpha}\left(u_{j}-u_{1}\right)\right|^{2} \mathrm{~d} x-\lambda \int_{\Omega}\left|u_{j}-u_{1}\right|^{2} \mathrm{~d} x \\
& -\int_{\Omega} f\left(x, u_{j}-u_{1}\right)\left|u_{j}-u_{1}\right| \mathrm{d} x \rightarrow 0
\end{aligned}
$$

Thus, $\left\|u_{j}-u_{1}\right\|^{2} \rightarrow 0$. Hence $u_{j} \rightarrow u_{1}$ in $W_{\alpha}^{1,2}$. The proof is complete.
Proof of Theorem 2. Let $\left\{e_{k}\right\}_{k}$ the eigenfunctions corresponding to λ_{k} be the orthonormal basis of $W_{\alpha}^{1,2}$. According to the proof of Theorem 1, we have

$$
W_{\alpha}^{1,2}=X_{1} \oplus X_{2}
$$

Consider $\lambda>\lambda_{1}$, and $\lambda \notin \sigma\left(\Delta_{\alpha}\right)$. By the definition of the eigenvalues, we get

$$
\begin{equation*}
\|u\|^{2} \leqslant \lambda_{k}|u|_{2}^{2} \quad \forall u \in X_{1} \quad \text { and } \quad\|u\|^{2} \geqslant \lambda_{k+1}|u|_{2}^{2} \quad \forall u \in X_{2} \tag{37}
\end{equation*}
$$

According to (32), we have $|F(x, t)| \leqslant C_{1}\left(1+t^{2}\right)$ for a.e. $x \in \Omega$, for all $t \in \mathbb{R}$. For every $u \in X_{1}$, we have

$$
\begin{align*}
J_{\lambda}(u) & =\frac{1}{2} \int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x-\frac{\lambda}{2} \int_{\Omega} u^{2} \mathrm{~d} x-\int_{\Omega} F(x, u) \mathrm{d} x \\
& \leqslant \frac{\lambda_{k}}{2}|u|_{2}^{2}-\frac{\lambda}{2}|u|_{2}^{2}+\frac{\varepsilon}{2} \int_{\Omega} u^{2} \mathrm{~d} x+C_{\varepsilon} \int_{\Omega} u \mathrm{~d} x \\
& \leqslant \frac{1}{2}\left(\lambda_{k}-\lambda+\varepsilon\right)|u|_{2}^{2}+C_{2}|u|_{2} \tag{38}
\end{align*}
$$

Let $\lambda_{k}<\lambda$ be such that $\lambda_{k}+\varepsilon<\lambda$. Then, since X_{1} is a finite dimensional subspace and $J_{\lambda} \rightarrow-\infty$ as $\|u\|$ diverges in X_{1}, there exists a positive constant C_{3} such that $J_{\lambda}(u) \leqslant-C_{3}$ for all $u \in X_{1}$. On the other hand, from (37), for every $u \in X_{2}$, we have

$$
\begin{aligned}
J_{\lambda}(u) & =\frac{1}{2} \int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x-\frac{\lambda}{2} \int_{\Omega} u^{2} \mathrm{~d} x-\int_{\Omega} F(x, u) \mathrm{d} x \\
& \geqslant \frac{1}{2}\|u\|^{2}-\frac{\lambda}{2 \lambda_{k+1}}\|u\|^{2}-\int_{\Omega} C_{1}\left(1+u^{2}\right) \mathrm{d} x \\
& \geqslant \frac{1}{2}\left(1-\frac{\lambda+C_{4}}{\lambda_{k+1}}\right)\|u\|^{2}-C_{5}
\end{aligned}
$$

We obtain that $J_{\lambda}(u) \geqslant C_{6}$ for all $u \in X_{2}$. Therefore, let $E=W_{\alpha}^{1,2}, V=X_{1}$ and $X=X_{2}$, and it follows from Lemmas 4 and 5 that all the conditions of Theorem 4 are satisfied.

If $\lambda<\lambda_{1}$, the functional J_{λ} is coercive and can be shown to a global minimum using the method of the Weierstrass Theorem. The proof is complete.

Lemma 6. Let $\left(f_{1}\right)-\left(f_{3}\right),\left(\lambda_{1}\right),\left(\lambda_{2}\right)$ be satisfied. Then there exist $\rho>0$ and $c_{0}>0$ such that $J_{\lambda}(u) \geqslant c_{0}$ for all $u \in S_{\rho} \cap X_{2}, S_{\rho}:=\left\{u \in W_{\alpha}^{1,2}:\|u\|=\rho\right\}$.

Proof. According to $\left(\Lambda_{2}\right)$, we have that $\lambda_{0}<0$. Therefore, it follows from $\left(f_{2}\right)$ that for every $\varepsilon>0$, there exist $\delta_{1} \geqslant 1$ and $\delta_{2} \geqslant 0$ such that

$$
\begin{equation*}
|F(x, t)| \leqslant \frac{\varepsilon}{2} t^{2} \quad \text { if }|t|>\delta_{1} \text { for a.e. } x \in \Omega, \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|F(x, t)-\frac{\lambda_{0}}{2} t^{2}\right| \leqslant \frac{\varepsilon}{2} t^{2} \quad \text { if }|t|<\delta_{2} \text { for a.e. } x \in \Omega \tag{40}
\end{equation*}
$$

From $\left(f_{1}\right)$, choosing any constant $p \in[0,4 Q /(Q-2))$, there exists $\epsilon>0$ such that

$$
\begin{equation*}
|F(x, t)| \leqslant \epsilon|t|^{p+2} \quad \text { if } \delta_{2} \leqslant|t| \leqslant \delta_{1} \text { for a.e. } x \in \Omega \tag{41}
\end{equation*}
$$

Hence, it follows from (39)-(41) that there exists ϵ_{1} such that $|F(x, t)| \leqslant\left(\lambda_{0}+\varepsilon\right) t^{2} / 2+$ $\epsilon_{1}|t|^{p+2}, t \in \mathbb{R}$, for a.e. $x \in \Omega$. Integrate both sides of the above formula, and we have that

$$
\begin{equation*}
\int_{\Omega}|F(x, u)| \mathrm{d} x \leqslant \frac{\lambda_{0}+\varepsilon}{2}|u|_{2}^{2}+\epsilon_{1}|u|_{p+2}^{p+2} \quad \forall u \in W_{\alpha}^{1,2} \tag{42}
\end{equation*}
$$

Then from (13), (37) and (42) we have

$$
\begin{aligned}
J_{\lambda}(u) & =\frac{1}{2} \int_{\Omega}\left|\nabla_{\alpha} u\right|^{2} \mathrm{~d} x-\frac{\lambda}{2} \int_{\Omega} u^{2} \mathrm{~d} x-\int_{\Omega} F(x, u) \mathrm{d} x \\
& \geqslant \frac{1}{2}\|u\|^{2}-\frac{\lambda}{2}|u|_{2}^{2}-\frac{\lambda_{0}+\varepsilon}{2}|u|_{2}^{2}-\epsilon_{1}|u|_{p+2}^{p+2} \\
& \geqslant \frac{1}{2}\|u\|^{2}-\frac{\lambda}{2 \lambda_{k+1}}\|u\|^{2}-\frac{\lambda_{0}+\varepsilon}{2 \lambda_{k+1}}\|u\|^{2}-\epsilon_{1}\|u\|^{p+2} \\
& \geqslant \frac{1}{2}\left(1-\frac{\lambda+\lambda_{0}+\varepsilon}{\lambda_{h}}\right)\|u\|^{2}-\epsilon_{1}\|u\|^{p+2} .
\end{aligned}
$$

Based on $\left(\lambda_{2}\right)$, note that ε can be small enough, there exists a constant α such that $J_{\lambda}(u) \geqslant$ $\alpha\|u\|^{2}-\epsilon^{\prime}\|u\|^{p+2}$. If ρ is small enough, there exist $c_{0}>0$ such that $J_{\lambda}(u) \geqslant c_{0}$.

Lemma 7. Let $\left(f_{1}\right),\left(f_{3}\right)$ and $\left(\lambda_{2}\right)$ be satisfied. Then there exist $c_{\infty}>c_{0}$ such that $J_{\lambda}(u) \leqslant c_{\infty}$ for all $u \in X_{1}$.

Proof. From (38), for every $u \in X_{1}$, we have that $J_{\lambda}(u) \leqslant(1 / 2)\left(1-\left(\lambda+C_{2}\right) / \lambda_{k}\right)\|u\|^{2}$ as X_{1} is a finite dimensional subspace, and $J_{\lambda} \rightarrow-\infty$ as $\|u\|$ diverges in X_{1}. We see that there exists $c_{\infty}=c_{\infty}(\varepsilon)\left(c_{\infty}>c_{0}\right)$ such that $J_{\lambda}(u) \leqslant c_{\infty}$.

Proof of Theorem 3. From Lemmas 4 and 5 we see that J_{λ} satisfies the (PS)-condition. Also, by Lemmas 6 and 7 we consider the pseudoindex theory ($S_{\rho} \cap X_{2}, \mathcal{H}^{*}, \gamma^{*}$) related to the genus, $S_{\rho} \cap X_{2}$ and J_{λ}. By Theorem A. 2 in [18], with $V=X_{1}, \partial B=S_{\rho}$ and $W=X_{2}$, we get $\gamma\left(X_{1} \cap h\left(S_{\rho} \cap X_{2}\right)\right) \geqslant \operatorname{dim} X_{1}-\operatorname{codim} X_{2}$ for all $h \in X_{1}$, which implies that $\gamma^{*}\left(X_{1}\right) \geqslant k-h-1$. Hence, with $\bar{A}=X_{1}, S=S_{\rho} \cap X_{2}$, all the conditions of Theorem 5 are satisfied. Thus, J_{λ} has at least $k-h-1$ distinct pairs of critical points corresponding to at most $k-h-1$ distinct critical values c_{i}. The proof is complete.

References

1. C.T. Anh, B.K. My, Existence of solutions to Δ_{λ}-Laplace equations without the AmbrosettiRabinowitz condition, Complex Var. Elliptic Equ., 61(1):137-150, 2016, https://doi. org/10.1080/17476933.2015.1068762.
2. R. Bartolo, A.M. Candela, A. Salvatore, Perturbed asymptotically linear problems, Ann. Mat. Pura Appl. (4), 193(1):89-101, 2014, https://doi.org/10.1007/s10231-012-0267-9.
3. J. Chen, X. Tang, Z. Gao, Infinitely many solutions for semilinear Δ_{λ}-Laplace equations with sign-changing potential and nonlinearity, Stud. Sci. Math. Hung., 54(4):536-549, 2017, https://doi.org/10.1556/012.2017.54.4.1382.
4. A.E. Kogoj, E. Lanconelli, On semilinear Δ_{λ}-Laplace equation, Nonlinear Anal., Theory Methods Appl., 75(12):4637-4649, 2012, https://doi.org/10.1016/j.na. 2011. 10.007.
5. A.E. Kogoj, S. Sonner, Hardy type inequalities for Δ_{λ}-Laplacians, Complex Var. Elliptic Equ., 61(3):422-442, 2016, https://doi.org/10.1080/17476933.2015.1088530.
6. D.T. Luyen, Two nontrivial solutions of boundary-value problems for semilinear Δ_{γ} differential equations, Math. Notes, 101(5-6):815-823, 2017, https://doi.org/10. 1134/S0001434617050078.
7. D.T. Luyen, Existence of nontrivial solution for fourth-order semilinear Δ_{γ}-Laplace equation in \mathbb{R}^{N}, Electron. J. Qual. Theory Differ. Equ., 2019:78, 2019, https://doi.org/10. 14232/ejqtde.2019.1.78.
8. D.T. Luyen, Sign-changing solutions of boundary value problems for semilinear Δ_{γ}-Laplace equations, Rend. Semin. Mat. Univ. Padova, 143:113-134, 2020, https://doi.org/10. 4171/rsmup/42.
9. D.T. Luyen, Nontrivial solutions to boundary value problems for semilinear Δ_{γ}-differential equations, Appl. Math., 66(4):461-478, 2021, https://doi.org/10.21136/AM. 2021.0363-19.
10. D.T. Luyen, Picone's identity for Δ_{γ}-Laplace operator and its applications, Ukr. Math. J., 73(4):601-609, 2021, https://doi.org/10.1007/s11253-021-01946-7.
11. D.T. Luyen, Multiple solutions for Δ_{γ}-Laplace problems without the Ambrosetti-Rabinowitz condition, Asian-Eur. J. Math., 15(3):2250051, 2022, https://doi.org/10.1142/ S1793557122500516.
12. D.T. Luyen, L.T.H. Hanh, Infinitely many solutions for semilinear Δ_{γ}-differential equations in \mathbb{R}^{N} without the Ambrosetti-Rabinowitz condition, Minimax Theory Appl., 5(1):7-18, 2020.
13. D.T. Luyen, L.T.H. Hanh, Infinitely many solutions for perturbed $\Delta \gamma$-Laplace equations, Georgian Math. J., 29(6):863-882, 2022, https://doi.org/10.1515/gmj-20222179.
14. D.T. Luyen, L.T.H. Hanh, Three nontrivial solutions of boundary value problems for semilinear Δ_{γ}-Laplace equation, Bol. Soc. Parana. Mat. (3), 40:1-10, 2022, https://doi.org/10. 5269/bspm. 45841.
15. D.T. Luyen, D.T. Huong, L.T.H. Hanh, Existence of infinitely many solutions for $\Delta_{\gamma^{-}}$ Laplace problems, Math. Notes, 103(5-6):724-736, 2018, https://doi.org/10.1134/ S000143461805005X.
16. D.T. Luyen, N.T. Nam, Infinitely many solutions for fourth-order semilinear Δ_{γ}-Laplace equation in \mathbb{R}^{N}, J. Elliptic Parabol. Equ., 7(2):977-988, 2021, https://doi.org/10. 1007/s41808-021-00129-6.
17. D.T. Luyen, N.M. Tri, Existence of solutions to boundary-value problems for similinear Δ_{γ} differential equations, Math. Notes, 97(1-2):73-84, 2015, https://doi. org/10.1134/ S0001434615010101.
18. P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., Vol. 65, AMS, Providence, RI, 1986, https : //doi.org/10.1090/cbms/065.
19. B. Rahal, Liouville-type theorems with finite Morse index for semilinear Δ_{λ}-Laplace operators, NoDEA, Nonlinear Differ. Equ. Appl., 25(3):21, 2018, https://doi.org/ 10.1007/s00030-018-0512-z.
20. B. Rahal, M.K. Hamdani, Infinitely many solutions for Δ_{α}-Laplace equations with signchanging potential, J. Fixed Point Theory Appl., 20(4):137, 2018, https://doi.org/ 10.1007/s11784-018-0617-3.

[^0]: ${ }^{1}$ Corresponding author.

