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Abstract. In this paper, a dynamical model of malaria transmission with vector-bias and time-
dependent controls is investigated. The controls include the RTS,S malaria vaccine, using insec-
ticide-treated mosquito net, treatment of infectious human, and indoor spraying. For constant
controls, the existence and stability of equilibrium, as well as the existence of backward bifurcation,
are obtained. The sensitivity analysis quantifies the impact of parameters and controls on the basic
reproduction number. For time-dependent controls, by using the Pontryagin’s maximum principle
the existence and expression of optimal controls are established. As an application of the model
and control strategies, the malaria transmission and controls in Democratic Republic of Congo
are discussed. To be specific, we simulate the reported cases of Democratic Republic of Congo
by World Health Organization and predict the trends. Cost-effectiveness analysis and numerical
simulations show that combining all controls can minimize the number of infected humans to the
full extent, using insecticide-treated mosquito net is the most cost-effectiveness strategy, combining
RTS,S malaria vaccine with using insecticide-treated mosquito net and treatment of infectious
human is also cost-effective among all the strategies with good effect.
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1 Introduction

Malaria, caused by protozoan parasites belonging to the genus Plasmodium, is a mosquito-
borne disease, which affects health systems and economies significantly. According
to the World Health Organization (WHO) 2021 reports, 241 million cases of malaria
and 627 thousand malaria deaths occurred globally in 2020, 14 million cases more and
69,000 more deaths compared to 2019 [23]. Humans get infected from the bite of infected
female Anopheles mosquitoes, especially, from these infected Plasmodium falciparum
and Plasmodium vivax. In the WHO African Region, Plasmodium falciparum accounts
for 99.7% of estimated malaria cases, while Plasmodium vivax is responsible for 74.1%
of malaria cases in the WHO Region of Americas.

Take Democratic Republic of Congo (Congo, DR), an African country, for example.
Based on data in Table 1, we can get Fig. 1, which shows that the death rate keeps de-
creasing from 1% to 0.1% during 2010–2020 with the advancement of society. However,
we can see that in Congo, DR, there are still about 5% people infected with malaria in the
year 2010, and that the number of population infected with malaria in Congo, DR keeps
increasing surprisingly to about 25% in 2020. Therefore, controlling the transmission of
malaria in Congo, DR is desperately in need.

Mathematical models have become vital tools for understanding the dynamics of
infectious diseases long time ago. The first mathematical model depicting the transmission
process of malaria was introduced by Ross [17] and refined by MacDonald [14] later.
From then on, the malaria transmission model was developed extensively [4, 15, 16].
Particularly, the vector-bias effect, namely, the greater attractiveness of infectious hu-
mans to mosquitoes than susceptible ones [5, 12], was firstly introduced to a malaria
transmission model by Kingsolver [11] in 1987. Subsequently, feeding bias by vectors
toward infected hosts and incubation time in mosquitoes included, Hosack et al. [7] found

Table 1. Reported cases (from [23]) and the population (from [20]) of Congo, DR.

Year Reported cases Death cases Population Year Reported cases Death cases Population

2010 2417780 23476 6.4564 · 107 2016 16821130 33997 7.8189 · 107

2011 4561981 23748 6.6755 · 107 2017 16793002 27456 8.1399 · 107

2012 4791598 21601 6.9021 · 107 2018 16972207 18030 8.4068 · 107

2013 6719887 30918 7.1359 · 107 2019 20480310 13072 8.6791 · 107

2014 10288519 25502 7.3767 · 107 2020 22590646 18636 8.9561 · 107

2015 12538805 39054 7.6245 · 107
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Figure 1. (a) The reported cases of malaria normalized by the population; (b) the death rate during 2010–2020.
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parasite modified behavior by a refined malaria model. Further, Chamchod and Britton [3]
improved the previous models by defining the attractiveness in a different way. Based on
these works, a lot of researchers investigated the malaria models with vector bias [1, 10].
All these results show that the vector bias has an important impact on the epidemiology
of malaria.

Furthermore, based on the optimal control theory, malaria transmission models are
also used in the decision-making of prevention and control of malaria [8,9,15,16,18]. Kim
et al. [10] applied two optimal controls (treatment and media awareness) and indicated
that the combination of the two controls was the most effective strategy to monitor the
disease. It should be pointed that few researcher focus on controlling the malaria with
vaccine since the uncertainty of malaria vaccination. However, recently, the World Health
Organization has recommended to use the RTS,S malaria vaccine (a vaccination mainly
for children under 5) broadly since if the RTS,S vaccine introduced widely and urgently,
tens of thousands of children’s lives could be saved every year [23].

In this paper, we developed a malaria transmission model with vector-bias effect and
time-dependent controls: RTS,S vaccine, using insecticide-treated mosquito net, treat-
ment of infectious human, indoor spraying simultaneously. We will use our model to sim-
ulate the reported cases of Congo, DR and propose several strategies to control the spread
of malaria in Congo, DR. The research topic in this paper is novel and characteristic. In
fact, few research analyze the control strategies with area-specific parameters.

The paper is arranged as follows. In Section 2, we formulate the nonautonomous
malaria model with vector bias. Then we analyze the dynamics of the autonomous ver-
sion in Section 3. Specifically speaking, the existence and stability of the disease-free
and endemic equilibria, the bifurcation analysis, as well as the sensitivity analysis, are
given. Furthermore, optimal control analysis of the nonautonomous model is performed
in Section 4. In Section 5, we apply the model to the malaria transmission in Congo,
DR. To be specific, we simulate the reported cases of Congo, DR by WHO and pre-
dict the trends in five years. Numerical simulations are used to observe the outcomes,
characterizations as well as the cost of these strategies. Furthermore, cost-effectiveness
analysis and numerical simulations show that combining all controls can minimize the
number of infected humans to the full extent, using insecticide-treated mosquito net is the
most cost-effectiveness strategy, combining RTS,S malaria vaccine with using insecticide-
treated mosquito net and treatment of infectious human is also cost-effective among all
the strategies with good effect. Finally, conclusions are summarized in Section 6.

2 Model formulation

The human population Nh(t) is divided into three compartments, that is, susceptible
Sh(t), infected Ih(t), and recovery Rh(t). The susceptible will be vaccinated RTS,S
(a malaria vaccine for children under 5) by rate of u1(t) ∈ [0, 0.4], δ is the efficiency of
vaccination. Assume that Λ1 is the birth or immigration rate of human population. They
either die naturally or diminished following infection with malaria at a rate (infection
rate) λh = σβ1(1− u2(t))Im/(νIh + Sh +Rh), where σ is the biting rate, β1 is the
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transmission probability of per bite, ν is the bias parameter, and u2(t) ∈ [0, 0.89] refers
to a time-dependent control function representing the decrease of transmission rate by
the use of insecticide-treated mosquito nets. Infectious individuals are assumed to recover
at a rate γ + τu3(t), where γ is the spontaneous rate, u3(t) ∈ [0, 0.88] also is a time-
dependent control function representing the treatment of infectious human with malaria
symptoms, and τ is the efficacy to treatment. Infectious individuals who does not recover
die naturally at rate d1, and die of the disease at rate α.

The female anopheles mosquito population Nm(t) is divided into two compartments,
susceptible Sm(t) and infectious Im(t). For mosquito population, the recruitment rate
is Λ2, the infection rate is λm = σβ2(1− u2(t))Ih/(νIh + Sh +Rh), where β2 is the
probability for a vector to get infected by an infectious human. Infectious mosquito die
at a rate d2 + cu4(t), where d2 is the natural death rate, and u4(t) ∈ [0, 1] is the control
function on mosquito population by spraying insecticide.

Based on the above details, the malaria mathematical model is given by the following
nonautonomous and nonlinear equations:

dSh
dt

= Λ1 −
σβ1(1− u2)ShIm
νIh + Sh +Rh

− d1Sh − δu1Sh + ρRh,

dIh
dt

=
σβ1(1− u2)ShIm
νIh + Sh +Rh

− (γ + d1 + α+ τu3)Ih,

dRh
dt

= (γ + τu3)Ih − (ρ+ d1)Rh + δu1Sh,

dSm
dt

= Λ2 −
σβ2ν(1− u2)SmIh
νIh + Sh +Rh

− (d2 + cu4)Sm,

dIm
dt

=
σβ2ν(1− u2)SmIh
νIh + Sh +Rh

− (d2 + cu4)Im,

(1)

where all parameters are positive and described in Table 2.

Table 2. Parameters for model (1).

Parameter Description Value Ref.
Λ1 Recruitment rate of the human population 3.67 · 106 [23]
Λ2 Recruitment rate of the mosquito population 8 · 108 year−1 Fitting
σ Mosquitoes biting rate 0.3 · 365 year−1 [4]
β1 Human transmission rate 0.01 [4]
β2 Mosquito transmission rate 0.3 [4]
d1 Natural death rate of human 1

65
year−1 [4]

d2 Natural death rate of mosquitoes 1
15

· 365 year−1 [4]
γ Recovery rate of infection human 0.2336 Fitting
ρ Loss of the immunity rate in human 1

2
year−1 [4]

α Disease induced death rate 3.3 · 10−3year−1 [23]
ν Probability that a mosquito picks infected 1.9 Fitting
ν human randomly
τ Proportion of effectively treated individuals 0.8 Assumed
c Increased death rate of mosquito 0.8 Assumed

Continued on next page
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Table 2 (Continued from previous page)
Parameter Description Value Ref.
c by the insecticide
δ Effectiveness of RTS,S malaria vaccine 0.4 [23]
u1 RTS,S malaria vaccination coverage rate 0−0.4 Assumed
u2 Effectiveness Insecticide-treated mosquito nets 0−0.89 Assumed
u3 Effectiveness Treatment of infectious human 0−0.88 Assumed
u4 Effectiveness Spraying of insecticides 0−1 Assumed

Firstly, as a basic property of solutions for model (1), we have the following lemma.

Lemma 1. If the initial value (Sh(0), Ih(0), Rh(0), Sm(0), Im(0)) are positive, then
solution (Sh(t), Ih(t), Rh(t), Sm(t), Im(t)) for all t > 0 also are positive. Furthermore,

lim sup
t→∞

Nh(t) 6
Λ1

d1
, lim sup

t→∞
Nm(t) 6

Λ2

d2
.

The proof of this lemma is omitted for simplicity.

3 Analysis of model with constant controls

In this section, we assume that all the controls ui (i = 1, 2, 3, 4) in model (1) are constants.
We will investigate the dynamical behaviors of model (1), including the calculation of
basic reproduction number, the existence of equilibria and their stability, the backward
bifurcation analysis, and the sensitivity analysis.

3.1 Equilibrium and stability

It is easy to see that model (1) has a unique disease-free equilibrium

E0 =

(
Λ1(d1 + ρ)

d1(d1 + δu1 + ρ)
, 0,

Λ1δu1
d1(d1 + δu1 + ρ)

,
Λ2

d2 + cu4
, 0

)
.

Using the next generation matrix method (see [19]), we can easily obtain the basic repro-
duction number of model (1)

R0 =
σ2β1β2Λ2d1ν(1− u2)2(d1 + ρ)

Λ1(γ + d1 + α+ τu3)(d2 + cu4)2(d1 + ρ+ δu1)
.

Based on the result in [19], the following theorem is established immediately.

Theorem 1. The disease-free equilibrium E0 is locally asymptotically stable if R0 < 1,
and is unstable if R0 > 1.

Let E∗ = (S∗h, I
∗
h, R

∗
h, S

∗
m, I

∗
m) be the endemic equilibrium of model (1). Denote

λ∗h =
σβ1(1− u2)I∗m
νI∗h + S∗h +R∗h

, λ∗m =
σβ2ν(1− u2)I∗h
νI∗h + S∗h +R∗h

.

Nonlinear Anal. Model. Control, 28(5):883–905, 2023
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Then, after some simple computations, we get

S∗h = Λ1(ρ+ d1)(γ + d1 + α+ τu3)
([
ρ(d1 + α) + d1(γ + d1 + α+ τu3)

]
λ∗h

+ d1(ρ+ d1 + δu1)(γ + d1 + α+ τu3)
)−1

,

I∗h = λ∗hS
∗
h(γ + d1 + α+ τu3)−1,

R∗h =
(
(γ+ τu3)λ∗h + (γ + d1 + α+ τu3)δu1

)
S∗h
(
(γ + d1 + α+ τu3)(ρ+ d1)

)−1
,

S∗m = Λ2(λ∗m + d2 + cu4)−1, I∗m = λ∗mS
∗
m(d2 + cu4)−1,

λ∗h =
(
σβ1(1− u2)Λ2λ

∗
m

[(
ρ(d1 + α) + d1(γ + d1 + α+ τu3)

)
λ∗h

+ d1(ρ+ d1 + δu1)(γ + d1 + α+ τu3)
])([

(γ + τu3 + νρ+ νd1)λ∗h

+ (ρ+ d1)(γ + d1 + α+ τu3) + δu1(γ + d1 + α+ τu3)
]2

× Λ1(d2 + cu4)(λ∗m + d2 + cu4)
)−1

,

λ∗m = σβ2ν(1− u2)(ρ+ d1)λ∗h
(
(γ + τu3 + νρ+ νd1)λ∗h

+ (ρ+ d1)(γ + d1 + α+ τu3) + δu1(γ + d1 + α+ τu3)
)−1

.

Therefore, we can get λ∗h satisfies the quadratic equation

b0λ
∗
h
2 + b1λ

∗
h + b2 = 0, (2)

where

b0 = Λ1(d2 + cu4)(γ + τu3 + νρ+ νd1)
(
σβ2ν(1− u2)(ρ+ d1)

+ (d2 + cu4)(γ + τu3 + νρ+ νd1)
)
,

b1 = σνβ2Λ1(1− u1)(1− u2)(d2 + cu4)(ρ+ d1)(ρ+ d1 + δu1)(γ + d1 + α+ τu3)

+ 2Λ1(d2 + cu4)2(ρ+ d1 + δu1)(γ + d1 + α+ τu3)(γ + τu3 + νρ+ νd1)

− σ2β1β2ν(1− u2)2(ρ+ d1)Λ2

(
ρ(d1 + α) + d1(γ + d1 + α+ τu3)

)
,

b2 = Λ1(d2 + cu4)2(ρ+ d1 + δu1)2(γ + d1 + α+ τu3)2(1−R0).

Thus, the existence of endemic equilibrium of model (1) is equivalent to the existence
of positive roots of equation (2). Based on Vieta’s theorem, when either of the following
conditions hold, then equation (2) has positive roots

(i) ∆ = b21 − 4b0b2 > 0, b1 < 0, b2 > 0;
(ii) b2 < 0.

It is easily to see that b2 > 0 (=, <) is equivalent to R0 < 1 (=, >). For the
convenience, define the constants:

R1 := 1− b21
4b0Λ1(d2 + cu4)2(ρ+ d1 + δu1)2(γ + d1 + α+ τu3)2

,

R2 :=
d1[σνβ2(1− u2)(ρ+ d1) + 2(d2 + cu4)(γ + τu3 + νρ+ νd1)]

(d2 + cu4)[ρ(d1 + α) + d1(γ + d1 + α+ τu3)]
,

Rc := max{R1, R2}.

https://www.journals.vu.lt/nonlinear-analysis
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Then ∆ > 0 (=, <) is equivalent to R0 > R1 (=, <), and b1 < 0 (=, >) is equivalent to
R0 > R2 (=, <). Therefore, we can establish the following conclusion on the existence
of endemic equilibrium for model (1).

Theorem 2. Model (1) always has a unique disease-free equilibrium E0.

(i) If Rc < R0 < 1, then model (1) has two endemic equilibria;
(ii) If R2 < R0 = R1 < 1, then model (1) has a unique endemic equilibrium E∗ of

multiplicity two;
(iii) If R2 < R0 = 1, then model (1) has a unique endemic equilibrium E∗;
(iv) If R0 > 1, then model (1) has a unique endemic equilibrium E∗;
(v) Otherwise, model (1) has no endemic equilibrium.

Remark 1. Theorem 2 shows that model (1) can generate a backward bifurcation under
the condition Rc < R0 < 1. The analysis will be given in Section 3.2 in detail.

Moreover, when R0 > 1, the local stability of endemic equilibrium E∗ can be
obtained by the linearization method. The characteristic equation of linearized system
at equilibrium E∗ and the corresponding coefficients ci (i = 1, 2, 3, 4, 5) in characteristic
equation are presented in Appendix. We have the following conclusion.

Theorem 3. When R0 > 1, then endemic equilibrium E∗ is locally asymptotically stable
if the following conditions corresponding to Hurwitz criterion hold:

c3 > 0, c2c3 − c1c4 > 0, c1c2c3 − c23 − c4c21 > 0. (3)

Remark 2. By parameter values in Table 2 and letting ui = 0, we can get the values of
ci in Appendix, i.e., c1 = 26.6808, c2 = 16.4375, c3 = 1.8222, c4 = 0.0254, and then
c2c3− c1c4 = 29.2739 > 0, c1c2c3− c23− c4c21 = 777.7324 > 0. Therefore, we checked
equation (3) numerically.

3.2 Bifurcation analysis

In this subsection, the forward and backward bifurcations are investigated for model (1).
The main method on the bifurcation analysis is presented in [2] based on the centre
manifold theory in [2]. We can establish the following result.

Theorem 4. Let constant A is defined below. If A > 0, then model (1) exhibits a back-
ward bifurcation at R0 = 1. If A < 0, then model (1) exhibits a forward bifurcation at
R0 = 1.

Proof. We choose the transmission rate β1 as a bifurcation parameter. Clearly, R0 = 1 is
equivalent to

β1 = β∗1 =
Λ1(d2 + cu4)2(γ + d1 + α+ τu3)(ρ+ d1 + δu1)

σ2νβ2(1− u2)2Λ2d1(ρ+ d1)
.

Nonlinear Anal. Model. Control, 28(5):883–905, 2023
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According to Theorem 1, equilibrium E0 is locally stable if β1 < β∗1 , and unstable if
β1 > β∗1 . Hence, β1 = β∗1 is a bifurcation value. Let x1 = Sh, x2 = Ih, x3 = Rh,
x4 = Sm, x5 = Im, and x = (x1, x2, x3, x4, x5)T. Then model (1) can be written in the
form dx/dt = f(x) with f = (f1, f2, f3, f4, f5), that is,

dx1
dt

= Λ1 −
σβ1(1− u2)x1x5
νx2 + x1 + x3

− d1x1 − δu1x1 + ρx3 := f1,

dx2
dt

=
σβ1(1− u2)x1x5
νx2 + x1 + x3

− (γ + d1 + α+ τu3)x2 := f2,

dx3
dt

= (γ + τu3)x2 − (ρ+ d1)x3 + δu1x1 := f3,

dx4
dt

= Λ2 −
σβ2ν(1− u2)x4x2
νx2 + x1 + x3

− (d2 + cu4)x4 := f4,

dx5
dt

=
σβ2ν(1− u2)x4x2
νx2 + x1 + x3

− (d2 + cu4)x5 := f5.

(4)

It is not difficult to obtain that the Jacobian matrix of system (4) at E0 with β1 = β∗1
is

J0 =


−(d1+δu1) 0 ρ 0 −σβ∗1(1−u2) (ρ+d1)

(ρ+d1+δu1)

0 −(γ+d1+α+τu3) 0 0 σβ∗1(1−u2) (ρ+d1)
(ρ+d1+δu1)

δu1 γ+τu3 −(ρ+d1) 0 0

0 −σβ2νΛ2d1(1−u2)
(d2+cu4)Λ1

0 −(d2+cu4) 0

0 σβ2νΛ2d1(1−u2)
(d2+cu4)Λ1

0 0 −(d2+cu4)


and the corresponding characteristic equation is

det(λE − J0) = λ(λ+ d1)(λ+ ρ+ d1 + δu1)(λ+ d2 + cu4)

× (λ+ γ + d1 + α+ τu3 + d2 + cu4). (5)

It is clear that equation (5) admits a simple zero eigenvalue and all other eigenvalues are
negative.

In the following, we calculate the right eigenvector w = (w1, w2, w3, w4, w5)T and
the left eigenvector v = (v1, v2, v3, v4, v5) with respect to the zero eigenvalue of J0.
From J0w = 0 we can get

w1 = − q1d1 + q2(d1 + α)

qd1(ρ+ d1 + δu1)
pw5, w2 =

p

q
w5,

w3 =
q1d1 − δu1(d1 + α)

d1q(ρ+ d1 + δu1)
w5, w4 = −w5, w5 > 0

with q = γ + d1 + α + τu3, q1 = γ + τu3, q2 = ρ + d1, q3 = d2 + cu4, n =
σβ2νΛ2d1(1 − u2)/((d2 + cu4)Λ1), p = σβ∗1(1 − u2)(ρ + d1)/(ρ + d1 + δu1). Then
from vJ0 = 0 we can get

v1 = 0, v2 =
q3
p
v5, v3 = 0, v4 = 0, v5 > 0.

https://www.journals.vu.lt/nonlinear-analysis
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Calculate the constants a and b as follows:

a =

n∑
k,i,j=1

vkwiwj
∂2fk(E0)

∂xi∂xj

=
∂2f2(E0)

∂x2∂x5
v2w2w5 +

∂2f2(E0)

∂x3∂x5
v2w3w5 +

∂2f5(E0)

∂x1∂x2
v5w1w2

+
∂2f5(E0)

∂x22
v5w

2
2 +

∂2f5(E0)

∂x2∂x3
v5w2w3 +

∂2f5(E0)

∂x2∂x4
v5w2w4,

b =

5∑
k,i=1

vkwi
∂2fk(E0)

∂xi∂β∗1
=
∂2f2(E0)

∂x5∂β∗1
v2w5.

From system (4) we can obtain

∂2f2(E0)

∂x2∂x5
= −σνβ1(1− u2)

d1(ρ+ d1)

Λ1(ρ+ d1 + δu1)
,

∂2f2(E0)

∂x3∂x5
= −σβ1(1− u2)

d1(ρ+ d1)

Λ1(ρ+ d1 + δu1)
,

∂2f5(E0)

∂x1∂x2
= −σβ2ν(1− u2)

Λ2d
2
1

q3Λ2
1

,
∂2f5(E0)

∂2x2
= −2νσβ2(1− u2)

Λ2d
2
1

q3Λ2
1

,

∂2f5(E0)

∂x2∂x3
= −σβ2ν(1− u2)

Λ2d
2
1

q3Λ2
1

,
∂2f5(E0)

∂x2∂x4
= σβ2ν(1− u2)

d1
Λ1
,

∂2f2(E0)

∂x5∂β1
= σ(1− u2)

ρ+ d1
ρ+ d1 + δu1

.

Therefore, we have

a =
σ(1− u2)A

Λ2
1q

2q2q3(d1 + ρ+ δu1)
, b =

ν(d1 + ρ)(d2 + cu4)

β∗1(d1 + ρ+ δu1)
v5w5

with

A = β∗1qq
2
2q3Λ1δu1(d1 + α) + νβ2p

2Λ2d1q2(d1 + α)(ρ+ d1 + δu1)2

− β∗1d1qq22q3Λ1

[
ν(ρ+ d1 + δu1) + q1

]
− νβ2pq2(ρ+ d1 + δu1)2

(
2Λ2d

2
1p+ Λ1d1qq3

)
.

Clearly, b > 0 and a > 0 (< 0) if and only if A > 0 (< 0). Thus, from the results in [2]
we can obtain that the conclusions in Theorem 6 hold. This completes the proof.

Remark 3. Figure 2 gives the numerical examples of forward and backward bifurcations.
From Fig. 2 we know that the efficiency rate of RTS,S vaccine δ has great impact on the
dynamical behaviors of model (1). Besides, for Fig. 2(a) with α = 2.9227, we can get
A = −5.7645 < 0, and for Fig. 2(b) with α = 4.8561, we can getA = 5.1993 > 0. This
checks Theorem 4 numerically.
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Figure 2. Bifurcation diagrams of model (1) for the force of infection at steady state λ∗h versus R0 when take
σ = 14, β1 = 0.03, β2 = 0.38, Λ2 = 1.1563 · 105, d1 = 0.01, ν = 3, ρ = 0.075, Λ1 = 6 · 105, d2 =
0.008, γ = 0.05, τ = 0.6, u1 = 0.31, u2 = 0.3002, u3 = 0.5, u4 = 0.2, c = 0.1, α = 0.02, 0.01, 10:
(a) forward bifurcation, (b) backward bifurcation.

3.3 Sensitivity of basic reproduction number to parameters and controls

Sensitivity analysis is a technique that permits exploration of complex models by eval-
uating how the quantities of interest (QOI) change with the variation of parameters of
interest (POI). Generally, the growth of an epidemic is partly characterized by the basic
reproduction number R0. For this, we analytically calculate the sensitivity indices of R0

to parameter p as follows: [4]:

ΥR0
p =

∂R0

∂p
· p
R0

.

In addition, the sign of the sensitivity index suggests whether the quantities of interest,
R0 increases (> 0) or decreases (< 0) with the parameter of interest p.

The sensitivity index of R0 with respect to parameters Λ1, Λ2, σ, β1, β2, and ν are
constant as shown in Table 3. For others, we get

ΥR0

d1
=

d1δu1
(d1 + ρ)(d1 + ρ+ δu1)

+
γ + α+ τu3

A2
,

ΥR0
γ = − γ

A2
, ΥR0

α = − α

A2
, ΥR0

d2
= − d2

d2 + cu4
,

whereA2 = γ+d1+α+τu3, which are related to controls. The ranges of these indices are
summarized in Table 3, which shows the most sensitive parameter is the average number
of times one mosquito would bite a human per year, σ, while the least sensitive parameter
is the disease induced death rate of human, α. In general, R0 decreases with the increase
of parameters γ, d2, and Λ1. Besides, R0 increases with the increase of parameters d1,
Λ2, β1, β2, and ν.

Table 3. Sensitivity indices of basic reproduction number, R0, for model (1)
at the baseline parameter values in Table 2.

Parameter Sensitivity indices value Parameter Sensitivity indices range
Λ1 −0.5000 d1 [+0.9363,+0.9800]
Λ2 +0.5000 d2 [−1.0000,−0.9682]
σ +1.000 γ [−0.9232,−0.2218]
β1 +0.5000 α [−0.0013,−0.0031]
β2 +0.5000 ν +0.5000
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Figure 3. Sensitivity indices of R0 with respect to the controls.
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Figure 4. Vary of R0 with respect to the controls.

The sensitivity indices of R0 with respect to the constant controls are given by

ΥR0
u1

= − δu1
ρ+ d1 + δu1

, ΥR0
u2

= − 2u2
1− u2

,

ΥR0
u3

= − τu3
γ + d1 + α+ τu3

, ΥR0
u4

= − 2cu4
d2 + cu4

.

Applying parameter values from Table 2, we get Fig. 3, which shows that the effect of the
four controls are closely related to the control levels. To be specific, using of bednets u2
affects transmission mostly, followed by u3, u4. Besides, from Fig. 4 we know that using
of insecticide-treated bednets and treatment of infectious can reduce the value of basic
reproduction number under 1.

Remark 4. It should be emphasized that to eliminate the disease, we must adjust some
constant controls ui large enough to make sureR0 < Rc (butR0 < 1) since the backward
bifurcation may happen when Rc < R0 < 1. Furthermore, in the reality, it is not easy
to keep the controls constant all the time. We know the fact that constant controls can
be regarded as an approximation of time-dependent ones. Therefore, in the next section,
we consider the model with time dependent controls and investigate the optimal controls
according to optimal control theory.

4 Optimal control

The purpose of this section is to achieve the optimal control of model (1) with time
dependent controls. We introduce the feasible control set as follows:

∆ =
{
u =

(
u1(t), u2(t), u3(t), u4(t)

)
: ui is measurable, i = 1, 2, 3, 4, and

06u1(t)60.4, 06u2(t)60.89, 06u3(t)60.88, 06u4(t)61 ∀t∈ [0, T ]
}
.
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The optimal control for model (1) aims at minimizing the number of malaria-infected hu-
mans Ih and mosquito Im and the cost needed during the intervention period. Therefore,
the objective functional is defined by

J(u) :=

T∫
0

g(t, φ,u) dt =

T∫
0

(
A1Ih +A2Im +

4∑
i=1

ξi
2
u2i

)
dt,

where φ = (Sh, Ih, Rh, Sm, Im) is the solution of model (1), A1, A2 are the weight
constants with respect to the number of infected humans and infected mosquitoes; ξi > 0
(i = 1, 2, 3, 4) are the weight constants on the benefit and cost; ξiu2i /2 (i = 1, 2, 3, 4) is
the cost of corresponding control.

In the following, we need to solve the optimal control problem: find a control u∗ ∈ ∆
such that min J(u) = J(u∗). Firstly, the existence of an optimal control is settled by the
following theorem.

Theorem 5. There exists an optimal control u∗ ∈ ∆ for the objective functional J(u)
subject to model (1) with positive initial conditions such that J(u∗) is minimal.

Theorem 5 can be proved by using the similar arguments as in [6,16]. Hence, we here
omit the proof for simplicity.

In fact, the characterization of optimal control is often deduced by Pontryagin’s max-
imum principle [8]. This idea is to convert the optimal control problem into a type of
problem of minimizing point wise Hamiltonian H with respect to u. The Hamiltonian
associated to our problem is

H
(
t, φ,u, λ(t)

)
= g(t, φ,u) +

5∑
i=1

λi(t)fi(t, φ,u)

with λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t)) representing the adjoint variables and
fi(t, φ,u) (i = 1, 2, 3, 4, 5) denoting the right-hand side of model (1). Let q = γ +
d1 + α+ τu3.

Theorem 6. Given an optimal control u∗ = (u∗1, u
∗
2, u
∗
3, u
∗
4), there exists a nontrivial

adjoint vector function λ(t) satisfying

dλ1
dt

= (d1 + δu1)λ1 − δu1λ3

+
(1− u2)[σβ1Im(νIh +Rh)(λ1 − λ2) + νσβ2SmIh(λ5 − λ4)]

(νIh + Sh +Rh)2
,

dλ2
dt

= qλ2 −A1 − (γ + τu3)λ3

+
(1− u2)[σνβ1ShIm(λ2 − λ1) + νσβ2Sm(Sh +Rh)(λ4 − λ5)]

(νIh + Sh +Rh)2
,

dλ3
dt

= −ρλ1 + (ρ+ d1)λ3

+
σ(1− u2)[β1ShIm(λ2 − λ1) + νβ2SmIh(λ5 − λ4)]

(νIh + Sh +Rh)2
,

(6)
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dλ4
dt

=
νσβ2(1− u2)Ih
νIh + Sh +Rh

(λ4 − λ5) + (d2 + cu4)λ4,

dλ5
dt

= −A2 +
σβ1(1− u2)Sh
νIh + Sh +Rh

(λ1 − λ2) + (d2 + cu4)λ5,

λi(T ) = 0 for i = 1, 2, 3, 4, 5.

(7)

The controls u∗i (i = 1, 2, 3, 4) satisfy the optimality condition

u∗1 = min

{
0.4, max

{
0,
δSh(λ1 − λ3)

ξ1

}}
,

u∗2 = min

{
0.89, max

{
0,
σ[β1ShIm(λ2 − λ1) + νβ2SmIh(λ5 − λ4)]

ξ2(νIh + Sh +Rh)

}}
,

u∗3 = min

{
0.88, max

{
0,
τIh(λ2 − λ3)

ξ3

}}
,

u∗4 = min

{
1, max

{
0,
c(Smλ4 + Imλ5)

ξ4

}}
.

(8)

Proof. The differential equations (6), (7) that governs the adjoint variables are obtained
by the following differentiation of the Hamiltonian function:

dλ1
dt

=− ∂H
∂Sh

,
dλ2
dt

=−∂H
∂Ih

,
dλ3
dt

=− ∂H

∂Rh
,

dλ4
dt

=− ∂H

∂Sm
,

dλ5
dt

=− ∂H
∂Im

.

Moreover, the optimality conditions ∂H/∂ui = 0 (i = 1, 2, 3, 4, 5) yield

∂H

∂u1
= ξ1u1 − λ1δSh + λ3δSh = 0,

∂H

∂u2
= ξ2u2 +

σβ1ShIm
νIh + Sh +Rh

(λ1 − λ2) +
σνβ2SmIh

νIh + Sh +Rh
(λ4 − λ5) = 0,

∂H

∂u3
= ξ3u3 − τIhλ2 + τIhλ3 = 0,

∂H

∂u4
= ξ4u4 − cSmλ4 − cImλ5 = 0.

Then we get

uo1 =
δSh(λ1 − λ3)

ξ1
, uo2 =

σ[β1ShIm(λ2 − λ1) + νβ2SmIh(λ5 − λ4)]

ξ2(νIh + Sh +Rh)
,

uo3 =
τIh(λ2 − λ3)

ξ3
, uo4 =

c(Smλ4 + Imλ5)

ξ4
.

Combining with the upper bounds on u∗1, u∗2, u∗3, and u∗4, we get the characterizations
in (8).

5 Applications to malaria transmission in Congo, DR

As shown in Fig. 1 and Table 1, the situation of malaria spread in Congo, DR is quite
serious. To make suitable control strategies, we will first simulate the reported cases
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Figure 5. Comparisons of the reported malaria cases in WHO (black curve) and the solution of infectious human
Ih for model (1): (a) simulation of the reported malaria cases in Congo, DR from 2010 to 2020; (b) prediction
of human malaria for Congo, DR in five years.

with model (1). Then we can get that the basic reproduction number of Congo, DR is
estimated to be R0

.
= 1.6038 with parameter values in Table 2. According to Theorem 2,

the disease in Congo, DR will be endemic, and Fig. 5(b) further verifies it. Therefore, it is
necessary to carry out research on optimal control strategies, so that reasonable responses
can be made from prevention and treatment to eradicate the disease as soon as possible
and minimize the loss as much as possible.

5.1 Data and parameters estimation

In this subsection, model (1) is used to simulate the reported annual malaria human cases
in WHO [23]. Here we use parameter values in Table 2. Some parameters values are
chosen based on references, and some are to match the data. We explain part of them in
the following.

1. The Birth rate of Congo, DR is 4.103% [21], and the total population of Congo,
DR in 2020 is 8.9561 · 107, so that the recruitment is 3.67 · 106.

2. The number of mosquito biting per day is 0.25–0.4 [4]. To fit the model better, we
take biting 0.3 · 365 per year.

3. The life span of human in Congo, DR is 62 [22]. So the corresponding death rate
is 1/62.

4. The average life expectancy of adult mosquito is about 15 to 20 days. Here we take
1/d2 to be 15/365 year.

5. The recovery rate γ is 3 months to 50 years assumed by [4]. Here we take the
immunity period to malaria of humans 1/γ to be 2 years.

6. The average disease induced death rate is 3.3 · 10−3 by data in Table 1.

Based on these parameter values, we carry out the numerical simulations of our model
and obtain a reasonable match between the infected human of model (1) and the malaria
data of Congo, DR from 2010 to 2020 in Fig. 5. It indicates that the transmission of
malaria in Congo, DR has not arrived at a stable period yet and the disease will become
more serious without further control measures.

Moreover, on the basis of parameter values in Table 2, the basic reproduction number
of Congo, DR are estimated to be 1.6038. Therefore, according to Theorem 2, the disease
in Congo, DR will be endemic and Fig. 5(b) further verifies it. Thus, it is necessary to
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carry out research on optimal control strategies, so that reasonable responses can be made
from prevention and treatment to eradicate the disease as soon as possible and minimize
the loss as much as possible.

5.2 Effect of some control strategies

To eradicate the spread of malaria in Congo, DR as soon as possible and to minimize the
corresponding loss as much as possible, we carry out research on optimal control, so the
reasonable responses can be made by the government of Congo, DR. In this section, we
propose the following strategies to control the spread of malaria in Congo, DR.

• Scenario I: Only one control strategy
Strategy A: RTS,S malaria vaccine u1.
Strategy B: Insecticide-treated mosquito net u2.
Strategy C: Treatment of infectious human u3.
Strategy D: Insecticide spraying u4.

• Scenario II: Coupled control strategies
Strategy E: RTS,S malaria vaccine u1 and insecticide-treated mosquito net u2.
Strategy F: RTS,S malaria vaccine u1 and treatment of infectious human u3.
Strategy G: RTS,S malaria vaccine u1 and insecticide spraying u4.
Strategy H: Insecticide-treated mosquito net u2 and treatment of infectious hu-
man u3.
Strategy I: Insecticide-treated mosquito net u2 and insecticide spraying u4.
Strategy J: Treatment of infectious human u3 and insecticide spraying u4

• Scenario III: Threefold control strategies
Strategy K: RTS,S malaria vaccine u1, insecticide-treated mosquito net u2, and
treatment of infectious human u3.
Strategy L: RTS,S malaria vaccine u1, insecticide-treated mosquito net u2, and
insecticide spraying u4.
Strategy M: RTS,S malaria vaccine u1, treatment of infectious human u3, and
insecticide spraying u4.
Strategy N: Insecticide-treated mosquito net u2, treatment of infectious human u3,
and insecticide spraying u4.

• Scenario IV: Fourfold control strategies
Strategy O: RTS,S malaria vaccine u1, using insecticide-treated mosquito net u2,
treatment of infectious human u3, and insecticide spraying u4.

In the following, we obtain the optimal controls numerically by solving model (1),
adjoint system (6), (7) and using the characterization of optimal controls (8) by the
forward-backward sweep method [13]. In detail, the forward fourth-order Runge–Kutta
method is used to solve the state system, and backward fourth-order Runge–Kutta method
is used for solving the adjoint system. The adjoint system is solved under the initial
assumption of zero controls and obtained solutions of the state system. The controls are
updated by taking average of the previous result and the characterizations in (8). This
condition continues repeatedly up to the consecutive iteration are negligibly close.
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Choose weight constants ξ1 = 100, ξ2 = 80, ξ3 = 240, ξ4 = 70, A1 = A2 = 100
and use parameter values in Table 2. Additionally, the initial condition values for the state
system are taken Sh(0) = 3·107, Ih(0) = 22590646,Rh(0) = 3.4·107, Sm(0) = 5·106,
Im(0) = 3 · 105.

Remark 5. It needs to point out that the parameter values used above are in Table 2,
which are closely related to the situation in Congo, DR, and the initial values of human
population above are taken based on real data in Table 1.

For all the scenarios, we can see from Figs. 6, 7, 9, 10 that the magnitudes of infected
humans reduce to lower levels in a way. The control profiles of u∗1, u∗2, u∗3, and u∗4 are
also depicted in Fig. 6 and Figs. 8–10.

Moreover, from Fig. 11 and Table 4 we can get the following result: using RTS,S only
is the cheapest but the effect is poor; combining all the controls could reduce the infected
population to the full extent but is the most expensive; the longer these controls go on the
more effective they are.

Remark 6. Actually, for strategy A, that is, using the RTS,S vaccine u1 only, the effect
is poor; see Figs. 6(a), 6(b). This implies that using RTS,S vaccine only is not good
enough, people need to change their way of life and apply other interventions such as
using insecticide-treated mosquito net in the daily life.
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Figure 6. Simulations depicting optimal use of scenario I.
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Although the interventions raised above all have good outcomes to some extent, due
to limited resources in a country or a city, we need to evaluate which intervention is more
economical. Cost-effectiveness analysis is widely used to do this evaluation [15, 16, 18].
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Figure 7. Simulations depicting optimal use of scenario II.
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Figure 8. The characterizations of optimal control for scenario II.
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Figure 9. Simulations depicting optimal use of scenarios III.
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Figure 10. Simulations depicting optimal use of strategy O.
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Figure 11. (a) Cost function for strategy A–O; (b) total cost for strategy A–O; (c) average cost-effectiveness
ratio; (d) total number of infection averted.
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5.3 Cost-effectiveness analysis

In this subsection, two approaches are applied to evaluate which intervention is more
economical, that is, the average cost-effectiveness ratio (ACER) and incremental cost-
effectiveness ratio (ICER). Cost-effectiveness analysis is widely used to do this evaluation
[15, 16, 18].

5.3.1 Average cost-effectiveness ratio (ACER)

The average cost-effectiveness ratio (ACER) deals with a single intervention and evaluates
that intervention against its baseline option, namely, no intervention.

ACER =
Total cost produced of scenarios i

Total number of infection averted of scenarios i
.

From Table 4 we can see the ACER of each scenarios, and Fig. 11(c) shows more
clearly that the most cost-effective strategy is strategy B, and strategy A is the least cost-
effective one. To further investigate the cost-effectiveness of the various control strategies,
we evaluated the incremental cost-effectiveness ratio (ICER).

5.3.2 Incremental cost-effectiveness ratio (ICER)

The incremental cost effectiveness ratio (ICER)

ICER =
Difference in infection averted costs in scenarios i and j

Difference in total number of infection averted in scenarios i and j

is used to measure up the changes between costs and benefits of two alternative control
strategies and is generally described as the additional cost per additional health outcome.
The numerator describe the difference of costs4 of interventions i and j, while the de-
nominator is the difference of health outcomes. To calculate ICER, we rank the control
strategies in increasing order effectiveness according to the total infection averted (see
Table 4). Firstly, compare the cost effectiveness of strategy A and strategy G. We have

ICER(A) =
96

1.2621 · 104
= 0.0076,

ICER(G) =
96− 445

1.2621 · 104 − 2.8326 · 106
= 1.2387 · 10−4.

From ICER(A) and ICER(G) we can see that strategy A is strongly dominated5 and
strategy G saves 1.2387 · 10−4 than strategy A. Therefore, it is better to exclude strategy
A from the set of control strategies and alternative interventions to implement to keep the
limited resources. Then we compute the ICER between strategy G and strategy D and get

4
∫ T
0 (1/2)Σ4

i=1ξiu
2
i dt is the total cost.

5The lower ICER for strategy G indicates that strategy A is strongly dominated, that is to say, strategy A is
more costly but less effective than strategy G.
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Table 4. Total infected averted, total cost, and average cost-
effectiveness ratio (ACER).

Strategy Averted Total cost ACER

A 1.2621 · 104 96 7.6 · 10−3

G 2.8326 · 106 445 1.5708 · 10−4

D 2.8224 · 106 349 1.2377 · 10−4

B 4.5973 · 107 317 6.8914 · 10−6

E 4.5973 · 107 411 8.9356 · 10−6

I 4.61619 · 107 667 1.4445 · 10−5

L 4.61620 · 107 761 1.6479 · 10−5

C 5.0780 · 107 928 1.8282 · 10−5

F 5.0786 · 10−7 1024 2.0163 · 10−5

J 5.2265 · 107 1279 2.4466 · 10−5

M 5.2269 · 107 1374 2.6293 · 10−5

H 6.827344 · 107 1246 1.8250 · 10−5

K 6.827346 · 107 1333 1.9519 · 10−5

N 6.8341149 · 107 1596 2.3353 · 10−5

O 6.8341167 · 107 1682 2.4615 · 10−5

ICER(G) = 1.5708 · 10−4, ICER(D) = 0.0094, so we exclude strategy D. Repeating
this process up to the final strategy, we obtain that strategy B is the most cost-effectiveness
strategy, which is consistent with the result by ACER.

However, from Fig. 9(b) we can see directly that strategy B reduce 32.73% less
infected population than strategy H, K, N, O. In other words, from Fig. 11 we can see
that strategy H, K, N, O cause reduction of infected population to the most extent, which
is what Congo, DR needs at present. Besides, Fig. 9(b) and Table 4 indicate that strategy O
cause reduction of infected population mostly. So we compare the incremental cost-
effectiveness ratio between these four strategies and found that strategy K is the most cost-
effectiveness. Therefore, if the government see reducing the number infected population
as the primary goal, then strategy K is a good choice. Now the policy maker must decide
which strategy to use.

6 Conclusions and discussions

As we all know, various control measures are applied to wipe out or control malaria since
the great loss caused by malaria for the world. Recently, there are some good news on
malaria vaccine, that is, WHO recommend to use the RTS,S malaria vaccine broadly [23].
In this paper, controls of RTS,S vaccine, using insecticide-treated mosquito net, treatment
of infectious humans, indoor spraying are incorporated to a malaria transmission model
with vector-bias effect.

Our model is used to simulate the reported human malaria cases of Congo, DR. Fifteen
strategies are proposed to control the spread of malaria in Congo, DR. In addition, cost-
effectiveness analysis suggests that the use of insecticide-treated mosquito net minimizes
malaria infection and costs needed for implementation. In summary, based on our analy-
sis, we have some suggestions on the control for malaria in Congo, DR.
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1. Using RTS,S vaccine only is not effective to control malaria in Congo, DR at
present, and people need to combine it with other interventions such as using
insecticide-treated mosquito net to block the transmission.

2. The use of insecticide-treated mosquito net is economy, the government should
keep everyone have access to it, especially, for children and people in remote
regions.

3. To reduce the number of malaria as many as possible, we suggest combine RTS,S
malaria vaccine u1 with insecticide-treated mosquito net u2 and treatment of in-
fectious human u3, and carry out these strategies for sufficiently long time.

4. Persistent financial support is also essential to control malaria in Congo, DR.

Of course, this paper could be extended in some ways. For example, one can study
the effect of vaccine as well as the waning of vaccine by adding another compartment in
the model.

Appendix

The Jacobian matrix of model (1) at endemic equilibrium E∗(S∗h, I
∗
h, R

∗
h, S

∗
m, I

∗
m) is

J∗ =



−d1 − δu1 −A1 A3 A5 + ρ 0 −A7

A1 −A3 − q −A5 0 A7

δu1 γ + τu3 −(ρ+ d1) 0 0

A2 −A4 A2 −A6 − (d2 + cu4) 0

−A2 A4 −A2 A6 −(d2 + cu4)


,

where

A1 =
β1a1(νI∗h +R∗h)I∗m

a2
, A2 =

νa1β2S
∗
mI
∗
h

a2
, A3 =

νβ1a1S
∗
hI
∗
m

a2
,

A4 =
νβ2a1(S∗h +R∗h)S∗m

a2
, A5 =

β1a1S
∗
hI
∗
m

a2
, A6 =

νβ2a1I
∗
h

a
, A7 =

β1a1S
∗
h

a
,

a = νI∗h + S∗h +R∗h, a1 = σ(1− u2), q = γ + d1 + α+ τu3.

Then we have the characteristic polynomial of J∗

F(λ) := (λ+ d2 + cu4)
(
λ4 + c1λ

3 + c2λ
2 + c3λ+ c4

)
= 0,

where

c1 = d2 + cu4 + ρ+ 2d1 + δu1 +A1 +A3 +A6 + q,

c2 = A1(A6 + d2 + cu4 + q + ρ+ d1) + d1m+ (A3 + q)(A6 + d2 + cu4)

+A5(γ + τu3 − δu1)−A2A4 −A4A7

+ (A6 + d2 + cu4 +A3 + q)(d1 + δu1 + ρ+ d1)
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c3 = (q + ρ+ d1)
(
A1(A6 + d2 + cu4)−A2A7

)
+ d1m(A3 +A6 + q + d2 + cu4)

+ (d1 +m)
(
(A3 + q)(A6 + d2 + cu4)−A4A7

)
− δu1

(
A5(A6 + d2 + cu4 + q) +A2A4

)
−A1ρ(γ + τu3)

+A1q(ρ+ d1) + (γ + τu3)
(
A5(A6 + d2 + cu4 + d1 + δu1) +A2A7

)
c4 =

(
A1(A6 + d2 + cu4)−A2A7

)(
q(ρ+ d1)− ρ(γ + τu3)

)
+ d1

(
(A3 + q)(A6 + d2 + cu4)−A4A7

)
m

+
(
A5(A6 + d2 + cu4) +A2A7

)(
(d1 + δu1)(γ + τu3)− δu1q

)
with m = ρ+ d1 + δu1. Thus, by the Hurwitz principle we have Theorem 3 on the local
stability of the endemic equilibrium.
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