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Abstract. This paper introduces new generalizations of the C-condition for (ψ, γ)-mappings in
modular metric spaces. We extend the fixed point results for such mappings yielding the generalized
C-condition in metric spaces to modular ones. We proved the existence and uniqueness of solutions
in modular metric spaces for these kinds of mappings. We give an example to emphasize that our
results work in the difference between modular metric spaces and usual ones. Moreover, we consider
some initial and boundary value problems to support the results obtained here. We examine the
existence and uniqueness of the solutions for the problems in modular metric spaces.

Keywords: fixed point theorem, modular metric space, C-condition, (ψ, γ)-mappings, Cauchy
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1 Introduction

The fixed point theory has maintained as an attractive topic since Banach introduced and
proved the well-known Banach fixed point theorem in 1922. In addition, to providing
the existence and uniqueness of solutions for distinct types of problems, the result and its
applications have been taken place in a lot of branches of applied science such as physics,
chemistry, engineering, image processing, economics, etc. Many different versions of this
principle have been extended in distinct spaces.

On the other hand, extending metric spaces to modular spaces (MS) has become
a significant issue since Nakano [22], Musielak, and Orlicz [20] introduced the concept
of MS and worked on some theories about them. For other results on MS, see [17, 18].

The idea of modular metric spaces (MMS) has been worked on by Chistyakov [8, 9].
He introduced basic definitions and properties of modular metric (MM). In [10], he
presented significant fixed point results for the contractions in MMS. After Chistyakov’s
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works, many authors have studied fixed point theory in MMS. Mongkolkeha and Kumam
[19] presented significant fixed point results for the contractive mappings. Aksoy et al. [5]
stated and proved fixed point theorems for Meir–Keeler-type contractions. Ege and Alaca
[12] obtained some fixed point results and gave an application to homotopy. Alaca et
al. [6] introduced fixed point theorems in modular ultrametric spaces. Abdou [3] attained
fixed points of Kannan mappings. Recently, Karapınar et al. [16] considered interpolative
Meir–Keeler maps and proved fixed point theorem for them. The papers mentioned above
demonstrate the significance and use of MMS in the literature. For some other related
papers in MMS, see [1, 2, 21, 26].

Now some information on C-condition are given. For the first time, Suzuki defined
the C-condition as follows.

Definition 1. (See [24].) Consider a self-map F on a given metric space (Ω, d). F yields
the C-condition if

1

2
d(τ1, F τ1) 6 d(τ1, τ2) =⇒ d(Fτ1, F τ2) 6 d(τ1, τ2) ∀τ1, τ2 ∈ Ω.

Then he proved the following theorem for mappings satisfying the C-condition in
a compact metric space.

Theorem 1. (See [25].) Suppose that F is a self-mapping on a compact metric space
(Ω, d). If

1

2
d(τ1, F τ1) 6 d(τ1, τ2) =⇒ d(Fτ1, F τ2) 6 d(τ1, τ2) ∀τ1, τ2 ∈ Ω

holds, then F is of a fixed point.

After, Popescu extended Suzuki’s theorem and gave the below result in his work.

Theorem 2. (See [23].) Assume that F : Ω → Ω is a self-mapping where (Ω, d) is
complete. Let

1

2
d(τ1, F τ1) 6 d(τ1, τ2)

implies

d(Fτ1, F τ2) 6 Ad(τ1, τ2) +B
[
d(τ1, F τ1) + d(τ2, F τ2)

]
+ C

[
d(τ1, F τ2) + d(τ2, F τ1)

]
,

where A+ 2B + 2C = 1, A > 0, and B,C > 0. Then F is of exactly one fixed point.

Definition 2. (See [13].) Let ψ be defined and continuous on [0,∞), and let ψ yields the
followings:

(ψ1) ψ is nondecreasing,
(ψ2) ψ(t) = 0 ⇔ t = 0.

Then it is named an altering distance function. The set of such functions is denoted by Ψ .
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Lemma 1. (See [27].) Let ψ be in Ψ , and a continuous function γ be defined on [0,∞).
Then γ(0) = 0 whenever ψ(ξ) > γ(ξ) for all ξ > 0.

Recently, Gupta et al. [14] have defined the C-condition for (ψ, γ)-mappings denoted
by Cψγ -condition and obtained fixed point results for those maps.

Definition 3. (See [14].) Consider a metric space (Ω, d) and take a self-map F on Ω. If

1

2
d(τ1, F τ1) 6 d(τ1, τ2) =⇒ ψ

(
d(Fτ1, F τ2)

)
6 γ

(
d(τ1, τ2)

)
∀τ1, τ2 ∈ Ω,

where γ is defined and continuous on [0,∞) and ψ ∈ Ψ , then F is said to satisfy the
Cψγ -condition.

In addition to this, Gupta et al. [15] introduced a generalized C-condition for the
mappings ψ and γ. They also obtained some fixed point results of a map yielding this
condition.

Definition 4. (See [15].) Take the map F : Ω → Ω on a metric space (Ω, d). If

1

2
d(τ1, F τ1) 6 d(τ1, τ2)

implies

ψ
(
d(Fτ1, F τ2)

)
6 γ

(
max

{
d(τ1, τ2),

1

2

(
d(τ1, F τ1) + d(τ2, F τ2)

)
,

1

2

(
d(τ1, F τ2) + d(τ2, F τ1)

)})
∀τ1, τ2 ∈ Ω,

then F is said to yield the generalized C-condition. Here ψ is in Ψ , and γ is defined and
continuous on [0,∞).

In the light of the above, any fixed point results about generalized C-condition in
MMS have not been obtained. We, therefore, focus on (ψ, γ)-mappings yielding the
generalizedC-condition in MMS. This paper aims to introduce some fixed point theorems
and results on the given MMS for (ψ, γ)-mappings. Moreover, we prove the existence and
uniqueness of solutions for these mappings. An example is considered in the difference
of MMS from metric ones. This example illustrates the importance of this paper. For
applications, some Cauchy problems with initial and boundary conditions of 1st-order
differential equations are examined. Fixed point results for these problems are given in the
considered MMS. As a result, the existence and uniqueness of solutions for the considered
problem are attained.

2 Fundamentals of modular metric spaces

This part gives some definitions and features of MMS.
For η > 0 and Ω 6= , define a function m as m : (0,∞)×Ω ×Ω → [0,∞]. We can

write the function m as m(η, τ1, τ2) = mη(τ1, τ2) for all η > 0 and τ1, τ2 ∈ Ω so that
mη : Ω ×Ω → [0,∞]. For more detail, see [11].
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Definition 5. (See [8, 9].) Suppose that mη : Ω ×Ω → [0,∞] yields the followings:

(m1) τ0 = τ1 ⇔ mη(τ0, τ1) = 0,
(m2) mη(τ0, τ1) = mη(τ1, τ0),
(m3) mη+µ(τ0, τ1) 6 mη(τ0, τ2) +mµ(τ2, τ1)

for all τ0, τ1, τ2 ∈ Ω and η, µ > 0. Then mη is called a metric modular (MM) on Ω.

A MM is called pseudomodular if m satisfies mη(τ, τ) = 0 for all η > 0 instead of
(m1).

Let instead of (m3), m yields the following:

mη+µ(τ0, τ1) 6
η

η + µ
mη(τ0, τ2) +

µ

η + µ
mµ(τ2, τ1) ∀η, µ > 0.

Then it is named convex. Furthermore, any convex MM yields

mη(τ0, τ1) 6
µ

η
mµ(τ0, τ1) 6 mµ(τ0, τ1) ∀η, µ > 0,

for all τ0, τ1 ∈ Ω and 0 < µ 6 η [8]. In general, a MM yields

mη2(τ0, τ1) 6 mη1(τ0, τ1), 0 < η1 6 η2,

for all τ0, τ1 ∈ Ω.

Definition 6. (See [8, 9].) m is said to be a strict on Ω, provided that for τ1, τ2 ∈ Ω with
τ1 6= τ2, mη(τ1, τ2) > 0 for all η > 0, or equivalently, if mη(τ1, τ2) = 0 for some η > 0,
then τ1 = τ2.

Definition 7. (See [8].) Consider a MM m on Ω and τ0 ∈ Ω. The followings are MMS
around τ0:

Ωm = Ωm(τ0) =
{
τ ∈ Ω: mη(τ, τ0)→ 0 as η →∞

}
,

Ω∗m = Ω∗m(τ0) =
{
τ ∈ Ω: ∃η = η(τ) > 0 s.t. mη(τ, τ0) <∞

}
.

(1)

Definition 8. (See [8, 10].) Consider the MMS Ωm and Ω∗m above. The following
statements hold for both spaces:

• The sequence {hn} inΩm ism-convergent to a point h ∈ Ω, named as the modular
limit of {hn}, if and only if mη(hn, h)→ 0 as n→∞ for some η > 0.

• {hn} in Ωm is m-Cauchy if mη(hn, hm)→ 0 as n,m→∞ for some η > 0.
• Consider S to be a nonempty subset of Ωm. Provided that every m-Cauchy se-

quence in S is m-convergent in S, then S is m-complete.
• S ⊆ Ωm and θ : S → R+ is a function on S. θ is called lower semicontinuous on
S if

lim
n→∞

mη(hn, h) = 0 =⇒ θ(h) 6 lim inf
n→∞

(
θ(hn)

)
.

Lemma 2. (See [10].) For any pseudomodular m on Ω, the MMS given in (1) are closed
w.r.t. m-convergent. Moreover, the limit of any strict modular is unique.

Note that if limn→∞mη(hn, h) = 0 for some η > 0, then limn→∞mν(hn, h) = 0
for all ν < η.
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3 Main results

In this part, we define two new generalized C-conditions for (ψ, γ)-mappings in MMS.
Then some theorems about the fixed points for the given mappings are proved in the
considered MMS.

Definition 9. Any self-mapping F on Ω∗m is named as a generalized C-condition for
(ψ, γ)-mappings, provided that F holds the following:

1

2
mη(τ0, F τ0) 6 mη(τ0, τ1) =⇒ ψ

(
mη(Fτ0, F τ1)

)
6 γ

(
M(τ0, τ1)

)
(2)

for all τ0, τ1 ∈ Ω∗m. Here γ is defined and continuous on [0,∞), and ψ is in Ψ .

We construct two fixed point theorems of new generalized C-conditions for different
M(τ0, τ1) given below:

M1(τ0, τ1) = max

{
mη(τ0, τ1),

mη(τ0, F τ0)(1 +mη(τ1, F τ1))

1 +mη(τ0, τ1)
,

mη(τ1, F τ0)(1 +mη(τ1, F τ0))

1 +mη(τ0, τ1)

}
(3)

and

M2(τ0, τ1) = max

{
mη(τ0, τ1),

mη(τ0, F τ0)(1 +mη(τ1, F τ1))

1 +mη(τ0, τ1)
,

mη(τ1, F τ1)mη(τ0, F τ0)

1 +mη(Fτ0, F τ1)
,

mη(τ1, F τ1)mη(τ1, F τ0)

1 +mη(τ1, F τ0) +mη(τ0, F τ1)

}
.

Now we shall give our main theorems for mappings satisfying condition (2) for
M(τ0, τ1) =M1(τ0, τ1) and M(τ0, τ1) =M2(τ0, τ1).

Theorem 3. Assume that mη is strict and convex MM on Ω and Ω∗m is m-complete. Let
F : Ω∗m → Ω∗m be satisfying condition (2) forM(τ0, τ1) =M1(τ0, τ1) with ψ(τ) > γ(τ)
for all τ > 0, where ψ ∈ Ψ , and γ : [0,∞)→ [0,∞) is continuous. Suppose that for all
η > 0, mη(h, Fh) < ∞ holds for a given h ∈ Ω∗w. Then F has at least one fixed point.
In addition, if mη(h, g) < ∞ for all η > 0 and h, g ∈ Ω∗m, then F is of a unique fixed
point, which belongs to Ω∗m.

Proof. Take h0 ∈ Ω∗m satisfying mη(h0, Fh0) < ∞. Then consider a sequence {hn} ∈
Ω∗m as hn = Fnh0 for all n ∈ N.

Assume that hn = hn+1 holds for any n ∈ N. In this case, hn is the fixed point.
Hence, assume that hn 6= hn+1 holds for all n ∈ N.

Putting τ0 = hn and τ1 = hn+1 in (2) yields

1

2
mη(hn, Fhn) =

1

2
mη(hn, hn+1) 6 mη(hn, hn+1).
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This implies

ψ
(
mη(Fhn, Fhn+1)

)
= ψ

(
mη(hn+1, hn+2)

)
6 γ

(
max

{
mη(hn, hn+1),

mη(hn, Fhn)(1 +mη(hn+1, Fhn+1))

1 +mη(hn, hn+1)
,

mη(hn+1, Fhn)(1 +mη(hn+1, Fhn+1))

1 +mη(hn, hn+1)

})
6 γ

(
max

{
mη(hn, hn+1),

mη(hn, hn+1)(1 +mη(hn+1, hn+2))

1 +mη(hn, hn+1)
,

mη(hn+1, hn+1)(1 +mη(hn+1, hn+2))

1 +mη(hn, hn+1)

})
. (4)

Then we have

ψ
(
mη(hn+1, hn+2)

)
6 γ

(
max

{
mη(hn, hn+1),

mη(hn, hn+1)(1 +mη(hn+1, hn+2))

1 +mη(hn, hn+1)

})
. (5)

Now we assume that mη(hn+1, hn+2) > mη(hn, hn+1) > 0. One can see that

1 +mη(hn+1, hn+2)

1 +mη(hn, hn+1)
<
mη(hn+1, hn+2)

mη(hn, hn+1)
. (6)

Putting (6) into (4) gives

ψ
(
mη(hn+1, hn+2)

)
6 γ

(
max

{
mη(hn, hn+1),

mη(hn, hn+1)(mη(hn+1, hn+2))

mη(hn, hn+1)

})
,

6 γ

(
max

{
mη(hn, hn+1),

(
mη(hn+1, hn+2)

)})
.

Since mη(hn+1, hn+2) > mη(hn, hn+1), we have

ψ
(
mη(hn+1, hn+2)

)
6 γ

(
mη(hn+1, hn+2)

)
,

which is a contradiction. Thus, mη(hn+1, hn+2) 6 mη(hn, hn+1).
Since the sequence mη(hn, hn+1) > 0 is nonincreasing, it has a limit

lim
n→∞

mη(hn, hn+1) = l > 0.

Taking the limit of both sides in (5) yields

ψ(l) 6 γ

(
max

{
l,

l

1 + l
(1 + l)

})
= γ(l),

which gives a contradiction. Hence, l = 0, that is, limn→∞mλ(hn, hn+1) = 0.
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Here we shall prove that {hn} is m-Cauchy. Suppose, on the contrary, {hn} is not
m-Cauchy. This means that for ε > 0, we can find two subsequences {hnk

} and {hmk
}

of {hn} satisfying nk > mk > k such that nk is the smallest index for which

mη(hmk
, hnk

) > ε, mη(hmk
, hnk−1

) < ε

for all η > 0. Thereby,

ε 6 m4η(hmk
, hnk

)

6 m2η(hmk
, hmk+1

) +mη(hmk+1
, hnk+1

) +mη(hnk+1
, hnk

). (7)

Taking the limit of both sides in (7) gives limk→∞mη(hmk+1
, hnk+1

) > ε. We can
write

mη(hmk
, hnk

) 6 wη/2(hmk
, hnk−1

) + wη/2(hnk−1
, hnk

).

Then we obtain limk→∞mη(hmk
, hnk

) 6 ε. Similarly,

mη(hmk
, hnk+1

) 6 wη/2(hmk
, hnk−1

) + wη/4(hnk−1
, hnk

) + wη/4(hnk
, hnk+1

).

As k →∞, we get limk→∞mη(hmk
, hnk+1

) 6 ε.
If we put x1 = hnk

and x2 = hmk
in (2), then

1

2
mη(hnk

, Fhnk
) =

1

2
mη(hnk

, hnk+1
) 6 mη(hnk

, hmk
)

is satisfied. This implies that

ψ(mη

(
Fhnk

, Fhmk
)
)

= ψ
(
mη(hnk+1

, Fhmk+1
)
)
,

6 γ

(
max

{
mη(hnk

, hmk
),
mη(hnk

, Fhnk
)(1 +mη(hmk

, Fhmk
))

1 +mη(hnk
, hmk

)
,

mη(hmk
, Fhnk

)(1 +mη(hmk
, Fhnk

))

1 +mη(hnk
, hmk

)

})
.

As k →∞, we obtain

ψ(ε) 6 lim
k→∞

ψ
(
mη(hnk+1

, hmk+1
)
)
6 γ

(
max

{
ε,

ε

1 + ε
(1 + ε)

})
6 γ(ε),

a contradiction. {hn} is, therefore, am-Cauchy sequence on am-completeΩ∗m. Then the
sequence {hn} is m-convergent to some h ∈ Ω∗m, that is, limn→∞mη(hn, h) = 0. This
limit is unique since m is a strict MM.

Now it will be proved that h yields Fh = h. Indeed, putting τ0 = hn and τ1 = h
in (2) gives

1

2
mη(hn, Fhn) =

1

2
mη(hn, hn+1) 6 mη(hnk

, h).
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This implies that

ψ
(
mη(Fhn, Fh)

)
= ψ

(
mη(hn+1, Fh)

)
,

6 γ

(
max

{
mη(hn, h),

mη(hn, Fhn)(1+mη(h, Fh))

1+mη(hn, h)
,

mη(h, Fhn)(1+mη(h, Fhn))

1+mη(hn, h)

})
,

6 γ

(
max

{
mη(hn, h),

mη(hn, hn+1)(1+mη(h, Fh))

1+mη(hn, h)
,

mη(h, hn+1)(1+mη(h, hn+1))

1+mη(hn, h)

})
.

As n→∞, we get
ψ
(
mη(h, Fh)

)
6 γ(0) < ψ(0).

Consequently, we obtain mη(h, Fh) = 0. Since m is a strict MM, we have Fh = h.
Now we will demonstrate that F is of exactly one fixed point. To prove this, take two

fixed points of F as h, g ∈ Ω∗m such that h 6= g. For h, g ∈ Ω∗m, Fh = h and Fg = g
hold.

Putting τ0 = h and τ1 = g in (2) yields

0 =
1

2
mη(h, Fh) =

1

2
mη(h, h) 6 mη(h, g).

It implies that

ψ
(
mη(Fh, Fg)

)
= ψ

(
mη(h, g)

)
,

6 γ

(
max

{
mη(h, g),

mη(h, Fh)(1 +mη(g, Fg))

1 +mη(h, g)
,

mη(g, Fh)(1 +mη(g, Fh))

1 +mη(h, g)

})
,

6 γ

(
max

{
mη(h, g),

mη(h, h)(1 +mη(g, g))

1 +mη(h, g)
,

mη(g, h)(1 +mη(g, h)

1 +mη(h, g)

})
,

= γ
(
mη(h, g)

)
.

Since, for all τ > 0, ψ(τ) > γ(τ), then mη(h, g) = 0. Hence, we have h = g because m
is a strict MM. This completes the proof.

If we take M(τ1, τ2) = M2(τ1, τ2) in (2), the following theorem can be proved in
a similar way with Theorem 3.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Fixed point theorems of new generalized C-conditions 957

Theorem 4. Suppose that the modular mη is strict and convex MM on Ω and Ω∗m is
m-complete. Assume that F : Ω∗m → Ω∗m is holding condition (2) for M(τ0, τ1) =
M2(τ0, τ1) with ψ(τ) > γ(τ) for all τ > 0, where ψ ∈ Ψ , and γ : [0,∞) → [0,∞) is
continuous. If mη(h, Fh) < ∞ yields for h ∈ Ω∗m and all η > 0, then F is of a fixed
point, which belongs to Ω∗m. Moreover, providing that mη(h, g) < ∞ for all h, g ∈ Ω∗m
and η > 0, then F is of exactly one fixed point.

Now we give an example in MMS, which is not a metric space. The purpose here is
to illustrate that our results work in the difference of MMS from metric spaces.

Example 1. Let us takeΩ = [−1, 1] and the mapping Fτ = −τ . We consider the modular
metric space Ω∗m = {τ ∈ Ω: ∃η = η(τ) > 0 s.t. mη(τ, τ0) < ∞}. In Ω∗m, we take the
strict and convex modular metricmη(τ0, τ1) = e−η|τ0−τ1|+|τ0|+|τ1| that is not metric.
Notice that F maps Ω∗m into itself, i.e., F : Ω∗m → Ω∗m.

First of all, we show that F satisfies condition (2), where M(τ0, τ1) = M1(τ0, τ1)
with ψ(τ) > γ(τ) for all τ > 0:

1

2
mη(τ0, F τ0) =

1

2
mη(τ0,−τ0) =

1

2

(
e−η|τ0 + τ0|+ |τ0|+ | − τ0|

)
,

= e−η|τ0|+ |τ0| 6 e−η|τ0 − τ1 + τ1|+ |τ0|,

6 e−η|τ0 − τ1|+ |τ0|+ |τ1| = mη(τ0, τ1).

Now we compute mη(Fτ0, F τ1) and M1(τ0, τ1) separately. For mη(Fτ0, F τ1), we can
write

mη(Fτ0, F τ1) = mη(−τ0,−τ1)

= e−η|τ1 − τ0|+ | − τ0|+ | − τ1|

= e−η|τ0 − τ1|+ |τ0|+ |τ1|.

Since e−η 6 1, we can write

mη(Fτ0, F τ1) 6 |τ0 − τ1|+ |τ0|+ |τ1|
6 |τ0|+ |τ1|+ |τ0|+ |τ1|
6 4.

Since τ0, τ1 ∈ [−1, 1], we get mη(Fτ0, F τ1) 6 4. For M1(τ0, τ1) given in (3), we can
write

M1(τ0, τ1) = max

{
e−η|τ0 − τ1|+ |τ0|+ |τ1|,

(e−η|τ0 + τ0|+ |τ0|+ |τ0|)(1 + e−η|τ1 + τ1|+ |τ1|+ |τ1|)
1 + e−η|τ0 − τ1|+ |τ0|+ |τ1|

,

(e−η|τ1 + τ0|+ |τ1|+ |τ0|)(1 + e−η|τ1 + τ0|+ |τ1|+ |τ0|)
1 + e−η|τ0 − τ1|+ |τ0|+ |τ1|

}
.
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Since e−η 6 1 and 1 + e−η|τ0 − τ1|+ |τ0|+ |τ1| > 1, we have

M1(τ0, τ1) 6 max
{
2
(
|τ0|+ |τ1|

)
, 4|τ0|

(
1 + 4|τ1|

)
,

2
(
|τ0|+ |τ1|

)(
1 + 2

(
|τ0|+ |τ1|

))}
.

Since τ0, τ1 ∈ [−1, 1], we obtain M1(τ0, τ1) 6 20.
Now we take the functions ψ(τ) = τ and γ(τ) = τ/2 such that ψ(τ) > γ(τ) for

all τ > 0. It is clear that ψ ∈ Ψ and γ : [0,∞) → [0,∞) is continuous. Therefore, we
obtain ψ(4) = 4 6 γ(20) = 10. This means that mη(τ0, F τ0)/2 6 mη(τ0, τ1) implies
that ψ(mη(Fτ0, F τ1)) 6 γ(M1(τ0, τ1)). F hence satisfies condition (2).

If there exists an element h0 ∈ Ω∗m satisfying mη(h0, Fh0) <∞, then F has et least
one fixed point. Indeed,

mη(h0, Fh0) = mη(h0,−h0) = 2
(
e−η|h0|+ |h0|

)
6 4|h0| 6 4 <∞

is satisfied. So F has a fixed point.
For the uniqueness of the fixed point, we show that for all h, g ∈ Ω∗m, mη(h, g) <∞

holds. Indeed,

mη(h, g) = e−η|h− g|+ |h|+ |g| 6 2
(
|h|+ |g|

)
6 4 <∞

holds. Consequently, all hypothesis of Theorem 3 are yielded. Hence, F is of exactly one
fixed point, which is 0, i.e., F0 = 0.

4 Applications

This part covers some problems for 1st-order differential equations with initial and bound-
ary conditions. The existence and uniqueness of solutions for these equations are investi-
gated. For this aim, we apply the results on fixed points given in Theorems 3 and 4.

(i) Consider the problem below:

z′(t) = ζ
(
t, z(t)

)
, t ∈ [0, T ],

z(0) = −z(T ),
(8)

where ζ : [0, T ]× R→ R is a kind of Carathéodory function.
We assume that the following hypotheses yield for both problems:

(H1) For all z ∈ R, the function ζ(t, z(t)) is Lebesgue-measurable on [0, T ], and for
any point z∗ ∈ R,

∫ T
0
ϕ(|ζ(s, z∗)|/η) ds <∞ holds.

(H2) There exists L > 0 such that |ζ(t, z1)− ζ(t, z2)| 6 L|z1−z2| for all z1, z2 ∈ R
and t ∈ [0, T ].

Problem (8) is equivalent to

z(t) =

T∫
0

G(t, s)
[
ζ
(
s, z(s)

)
+ z(s)

]
dt,
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where the Green function, G(t, s), is defined by

G(t, s) =

{
eL+s−t

eT+1
, 0 6 s < t 6 T,

−es−t

eT+1
, 0 6 t < s 6 T.

(9)

Now consider continuous, convex, nondecreasing, and unbounded function defined
by ϕ : R+ → R+ with ϕ(x) = 0 ⇔ x = 0. Let us denote a set of real-valued functions
defined on [0, T ] by Ω′ := {z | z : [0, L] → R}. For all z1, z2 ∈ Ω′ and η > 0, we
consider the following MM m : (0,∞)×Ω′ ×Ω′ → [0,∞]:

mη(z1, z2)

= sup
π

i∑
j=1

ϕ

(
|[z1(tj) + z2(tj−1)]− [z2(tj) + z1(tj−1)]|

η(tj − tj−1)

)
(tj − tj−1), (10)

where π = {tj}ij=0 are partitions of [0, T ]. Note that mη(z1, z2) is a pseudomodular and,
moreover, convex on Ω′ [8, 10].

We take Ω′m as the space of bounded generalized ϕ-variations mappings given by

Ω′m = Ω′m(z0) =
{
z ∈ Ω′: ∃η = η(z) > 0 s.t. mη(z, z0) <∞

}
,

which is a convex pseudomodular metric space, and denoted by GVϕ([0, L]) [7]. Here

z ∈ Ω′m ⇐⇒ mη(z, z0) = sup
π

i∑
j=1

ϕ

(
|z(tj)− z(tj−1)|
η(tj − tj−1)

)
(tj − tj−1) <∞

for η = η(z) > 0.
Define a set for real valued functions with anti-periodic condition on [0, T ] as

Ω1 :=
{
z
∣∣ z : [0, T ]→ R, z(0) = −z(T )

}
⊂ Ω′.

Note that the MM mη in (10) is strict and convex on Ω1.
For problem (8), we take the following MMS:

Ω∗m := Ω′m ∩Ω1 =
{
z ∈ Ω′m: z(0) = −z(L)

}
. (11)

Now we give some lemmas to be utilized in proving the existence and uniqueness of the
solution for problem (8).

Lemma 3. (See [10, 11].) Ω∗m given in (11) is m-complete.

Lemma 4. (See [4].) If ϕ yields ϕ(ξ)/ξ →∞ as ξ →∞, then m1(z, 0) is named as the
ϕ-variation of z. If, in addition, m1(z, 0) <∞, then z has a bounded ϕ-variation on the
interval [0, L]. Here we may write mη(z1, z2) as

mη(z1, z2) = mη(z1 − z2, 0) = m1

(
z1 − z2
η

, 0

)
, η > 0.
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For the function ω on Ω∗m, we have the following:

ω ∈ Ω∗m ⇐⇒ mη(ω, 0) = m1

(
ω

η
, 0

)
<∞, η > 0

⇐⇒ ω ∈ AC[0, T ], ω′ ∈ L1[0, T ]

and mη(ω, 0) =

T∫
0

ϕ

(
|ω′(t)|
η

)
dt <∞,

whereAC(I) andL1(I) denote the spaces of absolutely continuous and Lebesgue-integrable
functions on I , respectively.

Define the function

Fz(t) =

T∫
0

G(t, s)
[
ζ(s, z) + z

]
ds,

where t ∈ I = [0, T ], z ∈ Ω∗m, and G(t, s) is given in (9). Let z yield Fz = z. Then
z ∈ GVϕ(I) is a solution of problem (8). Our aim is to get all hypotheses in Theorem 3
satisfied, which gives that (8) is of a unique solution on Ω∗w.

Lemma 5. (See [4].) If the function ζ(t, z(t)) yields conditions (H1) and (H2), then F
mapsΩ∗m into itself, i.e., F : Ω∗m → Ω∗m. Moreover, F satisfies (Fz)′ = ζ(t, z)+z−Fz.

Theorem 5. Suppose that z0, z1 ∈ GVϕ([0, T ]) are two functions with z0 6 z1 and
ζ(t, z0(t)) 6 z′1(t) for all t ∈ I = [0, T ]. If ζ(t, z0) yields conditions (H1) and (H2), then
problem (8) has a unique solution, z0 ∈ GVϕ(I).

Proof. Let z0(t) 6 z1(t) and ζ(t, z0(t)) 6 z′1(t). Then we can write z0(t)+ζ(t, z0(t)) 6
z1(t) + z′1(t). Moreover, we have

Fz0(t) =

T∫
0

G(t, s)
[
f
(
s, z0(s)

)
+ z0(s)

]
dx 6 z1(t).

First of all, we will show mη(z0, F z0)/2 6 mη(z0, z1).

mη(z0, F z0) = mη(z0 − Fz0, 0) =
T∫

0

ϕ

(
|(z0(t)− Fz0(t))′|

η

)
dt.

Since (Fz0)
′(t) = ζ(t, z0) + z0 − Fz0 and z′0 = ζ(t, z0), |(z0(t) − Fz0(t))

′| =
|z′0(t)− (Fz0)

′(t)| = |z0(t)− Fz0(t)|, we have

mη(z0, F z0) =

T∫
0

ϕ

(
|z0(t)− Fz0(t)|

η

)
dt.
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By Fz0(t) 6 z1(t) we find |z0(t) − Fz0(t)| 6 |z0(t) − z1(t)|. For |z0(t) − z1(t)|,
we can write

∣∣z0(t)− z1(t)∣∣ =
∣∣∣∣∣
T∫

0

G(t, s)
([
ζ
(
s, z0(s)

)
+ z0(s)− ζ

(
s, z1(s)

)
− z1(s)

])
ds

∣∣∣∣∣,
6

T∫
0

∣∣G(t, s)∣∣∣∣([ζ(s, z0(s))+ z0(s)− ζ
(
s, z1(s)

)
− z1(s)

])∣∣ds,
6
∣∣([ζ(s, z0(s))+ z0(s)− ζ

(
s, z1(s)

)
− z1(s)

])∣∣ T∫
0

∣∣G(t, s)∣∣ds,
where

∫ T
0
|G(t, s)|ds = (eT − 1/(eT + 1) 6 1.

Thereby, we can write

|z0 − z1| 6
∣∣([ζ(s, z0(s))+ z0(s)− ζ

(
s, z1(s)

)
− z1(s)

])∣∣,
6
∣∣ζ(s, z0(s))− ζ(s, z1(s))∣∣+ ∣∣z0(s)− z1(s)∣∣,

6 L|z0 − z1|+ |z0 − z1| = (L+ 1)|z0 − z1|.

Furthermore, using |z0 − z1| 6
∫ T
0
|(z0(s)− z1(s))′|ds gives

|z0 − z1| 6 (L+ 1)|z0 − z1| 6 (L+ 1)

T∫
0

∣∣(z0(s)− z1(s))′∣∣ds.
Since |z0(t)− Fz0(t)| 6 |z0(t)− z1(t)|, using monotonicity of ϕ provides us with

ϕ

(
|(z0(t)− Fz0(t))′|

η

)
6 ϕ

(
(L+ 1)

T∫
0

|(z0(s)− z1(s))′|
η

)
ds.

Let T (L+ 1) = a/2 < 1/2. By Jensen’s inequality we acquire

ϕ

(
(L+ 1)

T∫
0

|(z0(s)− z1(s))′|
η

)
ds 6 T (L+ 1)

T∫
0

ϕ

(
|(z0(s)− z1(s))′|

η

)
ds,

and, therefore,

mη(z0, F z0) 6 T (L+ 1)mη(z0 − z1, 0) = T (L+ 1)mη(z0, z1).

Then the following holds:

1

2
mη(z0, Fz0) 6 mη(z0, F z0) 6 mη(z0, z1). (12)
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Now we will show that (12) implies mη(Fz0, F z1) 6 γ(M1(z0, z1)).

mη(Fz0, Fz1)

= mη(Fz0 − Fz1, 0) =
T∫

0

ϕ

(
|(Fz0 − Fz1)′|

η

)
dt,

=

T∫
0

ϕ

(
|(ζ(t, z0(t)) + z0(t)− Fz0(t))− (ζ(t, z1(t)) + z1(t)− Fz1(t))|

η

)
dt.

Since

|Fz0 − Fz1| =

∣∣∣∣∣
T∫

0

G(t, s)
([
ζ
(
s, z0(s)

)
+ z0(s)− ζ

(
s, z1(s)

)
− z1(s)

])
ds

∣∣∣∣∣,
6

T∫
0

∣∣G(t, s)∣∣∣∣([ζ(s, z0(s))+ z0(s)− ζ
(
s, z1(s)

)
− z1(s)

])∣∣ds,
6
∣∣([ζ(s, z0(s))+ z0(s)− ζ

(
s, z1(s)

)
− z1(s)

])∣∣ T∫
0

∣∣G(t, s)∣∣ ds,
6
∣∣ζ(s, z0(s))− ζ(s, z1(s))∣∣+ ∣∣z0(s)− z1(s)∣∣,

6 L|z0 − z1|+ |z0 − z1| = (L+ 1)|z0 − z1|,

then we can write∣∣(ζ(t, z0(t) + z0(t)− Fz0(t)
))
−
(
ζ
(
t, z1(t) + z1(t)− Fz1(t)

))∣∣,
6
∣∣ζ(t, z0(t))− ζ(t, z1(t))∣∣+ ∣∣z0(t)− z1(t)∣∣+ ∣∣Fz0(t)− Fz1(t)∣∣,

6 L|z0 − z1|+ |z0 − z1|+ (L+ 1)|z0 − z1| = 2(L+ 1)|z0 − z1|,

6 2(L+ 1)

T∫
0

∣∣(z0(s)− z1(s))′∣∣ds.
Using monotonicity, the convexity of ϕ and Jensen’s inequality give

T∫
0

ϕ

(
|ζ(t, z0(t) + z0(t)− Fz0(t))− ζ(t, z1(t) + z1(t)− Fz1(t))|

η

)
dt,

6

T∫
0

ϕ

(
2(L+ 1)

T∫
0

|(z0(t)− z1(t))′|
η

)
dsdt,
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6 2(L+ 1)

T∫
0

T∫
0

ϕ(
|(z0(t)− z1(t))′|

η
) dsdt,

= 2(L+ 1)Tmη(z0 − z1, 0) = 2T (L+ 1)mη(z0, z1).

Hence, we get
mη(Fz0, F z1) 6 amη(z0, z1),

where 2T (L+ 1) = a < 1.
Let ψ(ξ) = ξ and γ(ξ) = aξ. Then ψ is in Ψ , and γ is continuous on [0,∞), yielding

ψ(ξ) > γ(ξ) for all ξ > 0. Hence, F yields condition (2) for M(z1, z2) =M1(z1, z2).
Now we want to prove that the problem has a unique solution. Since mη(z0, F z0) 6

mη(z0, z1) from (12), it is adequate to demonstrate that mη(z0, z1)<∞ for all z0, z1 ∈
Ω∗m:

mη(z0, z1) = mη(z0 − z1, 0) =
T∫

0

ϕ

(
|(z0(t)− z1(t))′|

η

)
dt,

=

T∫
0

ϕ

(
|ζ(t, z0(t))− ζ(t, z1(t))|

η

)
dt.

For a point h0 ∈ R,∣∣ζ(t, z0(t))− ζ(t, z1(t))∣∣ = ∣∣ζ(t, z0(t))− ζ(t, h0)− ζ(t, z1(t))+ ζ(t, h0)
∣∣,

6
∣∣ζ(t, z0(t))− ζ(t, h0)∣∣+ ∣∣ζ(t, z1(t))− ζ(t, h0)∣∣,

6 L
∣∣z0(t)− h0∣∣+ L

∣∣z1(t)− h0∣∣,
6 L

∣∣z0(t)∣∣+ L
∣∣z1(t)∣∣+ 2L|h0|.

Since z0, z1 ∈ Ω∗m, there exist η1 > 0 and η2 > 0 such that
∫ T
0
ϕ(|z′0(t)|/η1) dt < ∞

and
∫ T
0
ϕ(|z′1(t)|/η2) dt < ∞. Taking η0 = LTη1 + LTη2 + 1 such that LTη1/η0 +

LTη2/η0 + 1/η0 = 1 and using the convexity of ϕ give

mη(z0, z1) =

T∫
0

ϕ

(
|ζ(t, z0(t))− ζ(t, z1(t))|

η0

)
dt,

6
LTη1
η0

T∫
0

ϕ

(
|z′0(t)|
η1

)
dt+

LTη2
η0

T∫
0

ϕ

(
|z′1(t)|
η2

)
dt+

T

η0
ϕ
(
L|h0|

)
,

<∞.

All hypotheses of Theorem 3 are satisfied, and hence, the solution of (8) is unique.
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(ii) Consider the following problem:

z′(t) = ζ
(
t, z(t)

)
, t ∈ [0, 1],

z(0) = 0,
(13)

where ζ : [0, 1]× R→ R is satisfying (H1) and (H2).
We can write the integral equation for the problem given in (13) as

z(t) =

1∫
0

R(t, s)ζ
(
s, z(s)

)
dt,

where R(t, s) is given as

R(t, s) =

{
1, 0 6 s 6 t 6 1,

0, 0 6 t < s 6 1.
(14)

For problem (13), consider the following set:

Ω2 :=
{
z
∣∣ z : [0, L]→ R, z(0) = 0

}
⊂ Ω′.

Lemma 6. mη in (10) is strict and convex on Ω2.

Proof. If mη(z0, z1) = 0⇒ z0(t∗) = z1(t∗) holds for all z0, z1 ∈ Ω2 and t∗ ∈ [0, 1],
then the proof is done.

From (10) we can write for any t0, t1 ∈ [0, T ],

ϕ

(
|[z0(t0) + z1(t1)]− [z0(t1) + z1(t0)]|

η(t0 − t1)

)
(t0 − t1) 6 mη(z0, z1).

Then we gain∣∣[z0(t0) + z1(t1)
]
−
[
z0
(
t1 + z1(t0)

)]∣∣ 6 ϕ−1
(
mη(z0, z1)

t0 − t1

)
η(t0 − t1).

Since ϕ−1(0) = 0, letting mη(z0, z1) = 0 gives∣∣[z0(t0) + z1(t1)
]
−
[
z0(t1) + z1(t0)

]∣∣ 6 ϕ−1(0)η(t0 − t1) = 0,

which implies [
z0(t0) + z1(t1)

]
−
[
z0
(
t1 + z1(t0)

)]
= 0.

From here we acquire for any t0, t1 ∈ [0, 1],

z0(t0)− z1(t0) = z0(t1)− z1(t1).

Letting t1 = 0 and z0(0) = z1(0) = 0 provides us with

z0(t0)− z1(t0) = z0(0)− z1(0) = 0.

Then we earn z0(t∗) = z1(t∗) for all t∗ ∈ [0, 1].
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Here we consider the following MMS Ω∗∗m , where problem (13) will be studied:

Ω∗∗m := Ω′m ∩Ω2 =
{
z ∈ Ω′m

∣∣ z(0) = 0
}
. (15)

Lemma 7. Ω∗∗m given in (15) is m-complete.

Proof. Take any m-Cauchy sequence {hn} ⊂ Ω∗∗m. Then mη(hn, hm) → 0 whenever
n,m→∞ for some η = η(hn) > 0.

We shall show that {hn} is m-convergent in Ω∗∗m. For t∈(0, 1) and m,n∈N, one has∣∣hn(t)− hm(t)
∣∣ = ∣∣hn(t)− hn(0)− hm(t) + hm(0)

∣∣,
=
∣∣hn(t) + hm(0)−

(
hm(t) + hn(0)

)∣∣,
6 ϕ−1

(
mη(hn, hm)

t− 0

)
η(t− 0). (16)

Taking limit in (16) as m,n→∞ provides

lim
m,n→∞

∣∣hn(t)− hm(t)
∣∣ = 0,

and, consequently, {hn} is Cauchy in R. Since R is complete, hn → h ∈ Ω2, where
h : [0, 1]→ R and h(0) = 0. In other words, for all t ∈ [0, 1],

lim
n→∞

∣∣hn(t)− h(t)∣∣ = 0.

Now we want to prove that limn→∞mη(hn(t), h(t)) = 0. Since mη is semicontinuous,
mη(hn, h) 6 lim infm→∞mη(hn, hm) for all n ∈ N. Since hn is m-Cauchy, for every
ε > 0, there exists n0 ∈ N such that mη(hn, hm) < ε for all n,m > n0. Hence,
lim supm→∞mη(hn, hm) 6 supm>n0

mη(hn, hm) < ε for all n > n0. Then we earn

mη(hn, h) 6 lim inf
m→∞

mη(hn, hm) 6 lim sup
m→∞

mη(hn, hm) < ε.

Since Ω∗∗m is closed w.r.t. modular convergence, hn is m-convergent to h ∈ Ω∗∗m . As
a result, Ω∗∗m is m-complete.

Now consider the following function:

Hz(t) =
1∫

0

R(t, s)ζ
(
s, z(s)

)
ds, t ∈ [0, 1], (17)

where z ∈ Ω∗∗m , and R(t, s) is given in (14). If we show that Hz = z, then z is
a solution of (13). Our goal is to get all hypotheses in Theorem 4 satisfied, which gives
the uniqueness of solution to (13) in Ω∗∗m .

Lemma 8. If the function ζ(τ, z(τ)) yields conditions (H1) and (H2), then H maps Ω∗∗m
into itself, i.e.,H : Ω∗∗m → Ω∗∗m .
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Proof. We first take any z ∈ Ω∗∗m and z(0) = 0. If we prove that Hz ∈ Ω∗∗m , then
H : Ω∗∗m → Ω∗∗m . First of all, since z(0) = 0, thenHz(0) = 0, and so,Hz ∈ Ω2.

For the function ζ(τ, z(τ)), we can write the following:∣∣ζ(τ, z(τ))∣∣ = ∣∣ζ(τ, z(τ))− fζ(τ, z∗) + ζ(τ, z∗)
∣∣,

6
∣∣ζ(τ, z(τ))− ζ(τ, z∗)∣∣+ ∣∣ζ(τ, z∗)∣∣,

6 L
∣∣z(τ)− z∗∣∣+ ∣∣ζ(τ, z∗)∣∣ 6 L

∣∣z(τ)∣∣+ L|z∗|+
∣∣ζ(τ, z∗)∣∣.

Since z(0) = 0, z(τ) can be written as z(τ) =
∫ τ
0
z′(s) ds for τ ∈ [0, 1]. Then we may

write ∣∣ζ(τ, z(τ))∣∣ 6 L

τ∫
0

∣∣z′(s)∣∣ ds,+∣∣ζ(τ, z∗)∣∣+ L|z∗|.

Since z ∈ Ω∗∗m ,
∫ T
0
ϕ(|z′(t)|/η3) dt < ∞ for a given η3 > 0. Moreover, (H1) states that∫ T

0
ϕ(|ζ(τ, z∗)|/η4) dt <∞ for η4 > 0.
Now we take η5 = Lη3 + η4 + 1 so that Lη3/η5 + η4/η5 + 1/η5 = 1. Since ϕ(·) is

convex and nondecreasing, then we have

ϕ

(
|ζ(τ, z(τ))|

η5

)
6 ϕ

(
L
∫ t
0
|z′(s)|ds+ |ζ(τ, z∗)|+ L|z∗|

η5

)
,

= ϕ

(
Lη3
η5

|z′(s)|
η3

+
η4
η5

|ζ(τ, z∗)|
η4

+
L

η5
|z∗|
)
,

6
Lη3
η5

ϕ

(∫ τ
0
|z′(s)|ds
η3

)
+
η4
η5
ϕ

(
|ζ(τ, z∗)|

η4

)
+

1

η5
ϕ
(
L|z∗|

)
. (18)

Integrating (18) from 0 to 1 gives

1∫
0

ϕ

(
|ζ(s, z(s))|

η5

)
ds 6

Lη3
η5

1∫
0

ϕ

(
|z′(s)|
η3

)
ds+

η4
η5

1∫
0

ϕ

(
|ζ(s, z∗)|

η4

)
ds

+
1

η5
ϕ
(
L|z∗|

)
.

Hence, we get
1∫

0

ϕ

(
|ζ(s, z(s))|

η5

)
ds 6 A <∞. (19)

By using Jensen’s inequality we can write

ϕ

(
1

η5

1∫
0

∣∣ζ(s, z(s))∣∣ds) 6

1∫
0

ϕ

(
|ζ(s, z(s))|

η5

)
ds. (20)

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Fixed point theorems of new generalized C-conditions 967

Combining (19) and (20) gives

ϕ

(
1

η5

1∫
0

∣∣ζ(s, z(s))∣∣ds) 6 A. (21)

From (21) we attain
1∫

0

∣∣ζ(s, z(s))∣∣ ds 6 η5ϕ
−1(A) <∞,

which provides us with ζ(τ, z(τ)) ∈ L1[0, 1]. Since (Hz)′(τ) = ζ(τ, z(τ)), we obtain
(Hz)′(τ) ∈ L1[0, 1].

Now it is enough to demonstrate thatHz ∈ AC[0, 1]. Indeed, we have

mη(Hz, 0) =
1∫

0

ϕ

(
|(Hz)′(s)|

η

)
ds =

1∫
0

ϕ

(
|ζ(s, z(s))|

η

)
ds <∞,

which yieldsHz ∈ AC[0, 1]. By Lemma 4H ∈ Ω∗∗m . Therefore,H : Ω∗∗m → Ω∗∗m .

Theorem 6. Consider the mapH : Ω∗∗m → Ω∗∗m given by (17). Suppose that the function
ζ(t, z(t)) yields (H1) and (H2). Then problem (13) is of a unique solution.

Proof. First of all, we want to show thatH satisfies (2) with M(z1, z2) =M2(z1, z2).
For all z1, z2 ∈ Ω∗∗m , we have

mη(z1,Hz1) = mη(z1 −Hz1, 0)

=

1∫
0

ϕ

(
|(z1(t)−Hz1(t))′|

η

)
dt =

1∫
0

ϕ

(
|z′1(t)− (Hz1)′(t)|

η

)
dt,

=

1∫
0

ϕ

(
|ζ(t, z1(t))− ζ(t, z1(t))

η

)
dt = 0. (22)

Then we gain

0 =
1

2
mη(z1,Hz1) 6 mη(z1, z2) ∀z1, z2 ∈ Ω∗∗m ,

which implies that ψ(mη(Hz1,Hz2)) 6 γ(M2(z1, z2)).
Indeed,

mη(Hz1,Hz2)

=

1∫
0

ϕ

(
|(Hz1(t)−Huz(t))′|

η

)
dt =

1∫
0

ϕ

(
|ζ(t, z1(t))− ζ(t, z2(t))|

η

)
dt,

6

1∫
0

ϕ

(
L|z1(t)− z2(t)|

η

)
dt 6

1∫
0

ϕ

(
L

1∫
0

|(z1(s)− z2(s))′|
η

ds

)
dt. (23)
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Since ϕ(·) is convex with ϕ(0) 6 0, for a 6 1, it is known that ϕ(ax) 6 aϕ(x). Letting
L 6 1 in (23) and by Jensen’s inequality, we acquire

mη(Hz1,Hz2) 6 L

1∫
0

ϕ

(
|(z1(s)− z2(s))′|

η

)
ds 6 Lmη(z1, z2).

Take ψ(τ) = τ , where ψ ∈ Ψ , and γ(τ) = Lτ with L 6 1 so that γ is continuous
on [0,∞). Then ψ(t) > γ(t) holds for all t > 0. Hence, for M(z1, z2) = M2(z1, z2),
condition (2) holds.

From (22) we have that 0 = mη(z1,Hz1) < ∞ holds for η > 0. This gives the
existence of a solution for (13).

If for all z1, z2 ∈ Ω∗∗m , we have mη(z1, z2) < ∞ accomplished, then the solution is
unique.

For this purpose, let us take z1, z2 ∈ Ω∗∗m with z1(0) = z2(0) = 0. Then z1 − z2 ∈
Ω∗∗m as (z1 − z2)(0) = z1(0) − z2(0) = 0. Furthermore, since z1 − z2 ∈ Ω∗∗m for any
η > 0, we have

mη(z1 − z2, 0) =
1∫

0

ϕ

(
|(z1 − z2)′(t)|

η

)
dt <∞.

Hence, we get

mη(z1, z2) = mη(z1 − z2, 0) =
1∫

0

ϕ

(
|(z1(s)− z2(s))′|

η

)
dt <∞.

Consequently, we conclude the proof.

5 Conclusion

We define two generalized C-conditions for (ψ, γ)-mappings in MMS. For these condi-
tions, we state the fixed point theorems and give their proofs. We also showed that the map
given in Example 1 has a unique solution in the difference between MMS and metric ones.
Furthermore, we consider two Cauchy problems on the MMS (11) and (15), respectively.
By using the results obtained in Theorems 3 and 4, we provide the existence and also the
uniqueness of the solutions for the considered problems. With these outcomes, we extend
the results for the C-condition in metric spaces to MMS. Since the results found herein
have not been investigated, these findings are new in the literature.
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