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Abstract. The issue of leader-following identical consensus for nonlinear Markov jump multi-
agent systems (NMJMASs) under deception attacks (DAs) or denial-of-service (DoS) attacks
is investigated in this paper. The Bernoulli random variable is introduced to describe whether
the controller is injected with false data, that is, whether the systems are subjected to DAs.
A connectivity recovery mechanism is constructed to maintain the connection among multi-agents
when the systems are subjected to DoS attack. The impulsive control strategy is adopted to ensure
that the systems can normally work under DAs or DoS attacks. Based on graph theory, Lyapunov
stability theory, and impulsive theory, using the Lyapunov direct method and stochastic analysis
method, the sufficient conditions of identical consensus for Markov jump multi-agent systems
(MJMASs) under DAs or DoS are obtained, respectively. Finally, the correctness of the results
and the effectiveness of the method are verified by two numerical examples.
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1 Introduction

The multi-agent systems (MASs) refer to network systems formed by a cluster of agent
individuals with partial perception, communication, calculation, and execution capabili-
ties, which are established by communicating and coordinating with each other through
the communication networks. In recent years, the MASs have attracted much attention in
different fields because they are exerted in broad places, for instance, intelligent traffic
control [2], unmanned aerial vehicle [20], formation [5], etc. Markov jump systems, as
a typical class of hybrid dynamical systems, have important applications in aerospace,
industrial processes, biomedical, socio-economic, and other fields. There exist some re-
lated reports [14, 29–31]. For example, Luo et al. investigated the stability of MASs with
asynchronous Markov jump parameters, the mean-square asymptotically stable sufficient
conditions were obtained by constructing suitable Lyapunov function [14]. In [30], Zhou
et al. researched the event-based asynchronous filtering issue of the Takagi–Sugeno fuzzy
nonhomogeneous Markov jump systems with variable packet dropouts. At the same time,
the MASs with Markov jump parameters have also attracted the research interest of many
scholars. For instance, Wu et al. studied the problem of identical consensus for MJMASs
with random time delays [24]. Liu et al. investigated the cooperative output regulation
problem of discrete-time linear MASs with Markov switching topologies based on the
stochastic stability scheme [13].

As is known to all, cyber attacks can destroy the stability of systems and even lead to
systems paralysis, which makes cyber attacks into one of the biggest dangers threatening
systems security. Among the common cyber attacks, there are main replay attacks (RAs)
[16,17,34], DoS attacks [7,19,26], and DAs [8,23,28,32]. The RAs are that when the at-
tacker records a transmitted data sequence and repeatedly transmits this data to overwrite
the new data, thus attacking the systems [17]. DoS attacks is one type of cyber attacks
by temporarily interrupting or stopping the network service of the systems, hindering the
normal transmission of data, and making it impossible for data to reach the destination
[19]. In the process of data transmission, DAs tamper with information to make the
systems complete the instructions of the attackers or injects false information to attack
the systems [23]. Mo et al. analyzed the impact of RAs on the cyber physical system [16].
In [34], Zhu et al. considered the formation control problem for second-order MASs under
RAs, put forward a new distributed elastic algorithm that was based on a rolling optimal
control method, which was shown to enable vehicles to asymptotically achieve the desired
formation under RAs. In [7], the authors proposed an adaptive memory observer-based
opposing interference control strategy and an adaptive internal memory event-triggered
scheme to address the event-triggered security consensus of the nonlinear MASs under
DoS attacks. Yang et al. proposed security consensus control strategy under DoS attacks,
which was based on an event-triggered scheme [26]. In [23], the authors investigated the
fault-tolerant secure consensus tracking issue of delayed nonlinear MASs, which have
DAs, parameter uncertainty and actuator failures, and proposed distributed impulsive
control protocol to obtain sufficient conditions of mean-square bounded consensus. He et
al. investigated the secure synchronization of MASs under DAs by distributed impulsive
control strategy, obtained the mean-square bounded synchronization conditions, and gave
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the error bound [8]. Mahmou et al. aimed at the distributed DoS attacks and DAs of
network physical systems, improved a method based on observation information and then
controlled the systems, and carried out simulation experiments to verify the applicability
of the method [15]. Compared with other types of attacks, DoS attacks and DAs are more
destructive, more hidden, and easier to implement. Therefore, DoS attacks and DAs are
commonly used in cyber attacks.

In order to make the systems work normally under cyber attacks, they need to be
controlled. Common control methods include event-triggered control [3], intermittent
control [35], impulsive control [1, 33], etc. Among them, the impulsive control has been
studied broadly. As one of the control approaches in the consistency protocol, impulsive
control has the advantages of discontinuity, transient and low energy consumption, which
can compensate for the shortcomings of continuous control [11, 25]. In [25], the concept
of impulsive control was given for the first time. In [11], the authors researched the
exponential stability of nonlinear delay systems by means of event-triggered impulsive
control strategy.

The consensus problem [10], as a hot issue of MASs coordinated control, has already
caused the concern of many scholars. The consensus is usually classified as identical
consensus [12], partial component consensus [27], lag consensus [22], etc. The leader-
following identical consensus of MASs is achieved, that is to say, through the mutual
communication and coordination among agents, the state values of all followers change
with time and, finally, reach the state value of the leader. In [4], Dong et al. constructed the
distributed adaptive observer and the common observer to estimate the state of the leader,
and after that the authors designed the synchronous controller and the asynchronous
controller on the basis of the estimation state and the self-information of the followers to
achieve the mean-square leader-following identical consensus. He et al. designed a control
protocol of distributed random sampling and gave the leader-following identical consen-
sus conditions of nonlinear MASs [9].

Based on the above discussion, it is clear that the leader-following identical consensus
problem of NMJMASs with impulse under DAs or DoS attacks has not been studied. We
will try to explore it. The main innovations can be summed up as follows:

(i) The Markov jump parameters are considered in the MASs, which are subjected
to DAs and DoS attacks. The identical consensus of the MASs are achieved by
impulsive control strategy.

(ii) In [7, 18, 19] and [26], the authors studied the identical consensus of MASs
under DoS attacks, however, the DAs and impulse were not considered. In [8]
and [23], the authors researched the identical consensus of MASs under DAs,
and yet the DoS attacks were not considered. In [21], the authors investigated the
consensus of nonlinear MASs with impulse under DoS attacks, however, the DAs
and Markov jump parameters were not considered. Moreover, compared with the
relevant results in [7, 8, 21, 23, 26], the MASs were not considered with Markov
jump parameters.

(iii) In [15], the authors studied the secure control of cyber physical systems under
DoS attacks and DAs, the Markov jump parameters and impulse were not con-
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sidered. Moreover,N+1 (N > 1) agents are considered in this paper rather than
a single agent.

Structure of the paper is shown as below. Section 2 shows the formulation of the ques-
tions as well as the corresponding preparatory knowledge. The leader-following bounded
identical consensus of NMJMASs with the impulse under DAs is analyzed in Section 3.1.
In Section 3.2, the leader-following identical consensus conditions of NMJMASs with the
impulse under DoS attacks are obtained. Section 4 shows the validity of the theoretical re-
sults obtained by means of two numerical examples. At last, in Section 5, the conclusions
and prospects are listed.

Notations. Rn is the n-dimensional real vector space. In stands for the nth order identity
matrix. The term ∗ in the matrix denotes a block caused by symmetry. The sign ⊗
indicates the Kronecker product. For a matrix y ∈ Rn×n, He(y) is to be characterized as
y+yT. λmax(B) stands for the maximal eigenvalue of matrixB. ϕmax(R) is a maximum
singular value. E(·) is the expected value for a stochastic variable. The Euclidean vector
norm is represented as ‖·‖.

2 Problem formulations

Graph theory. The network communication topologies of the agents are presented as
G = (ς, χ, C), where ς = (ς1, ς2, . . . , ςN ) is the nodes set, χ = ς × ς is the edges set,
and C = [aij ] ∈ RN×N with aii = 0 stands for the adjacency matrix. It is assumed that
a direct edge from agent j to agent i is available, that is, (j, i) ∈ χ, aij > 0, otherwise,
aij = 0. A directed path consists of a series of consecutive directed edges. If aij = aji,
G is undirected. The Laplacian matrix L = [lij ] ∈ RN×N is described by lii =

∑
j 6=i aij

and lij = −aij with j 6= i.
Consider the MASs with Markov jump parameters, and the dynamic model of the ith

follower is described as

ẋi(τ) = Aσ(τ)xi(τ) +Bσ(τ)g
(
xi(τ)

)
+ ui(τ), i = 1, 2, . . . , N, (1)

where τ stands for time variable, and τ > 0. xi(τ) ∈ Rn stands for the state vector of the
ith follower. g(·) is continuous nonlinear vector function satisfying Assumption 1. ui(τ)
is the control input vector of the ith follower. Aσ(τ) and Bσ(τ) are known constant ma-
trices within appropriate dimensions. {σ(τ), τ > 0} denotes a continuous time Markov
jump process on the complete probability space (Ω,F,P) and takes the value in the finite
set M = {1, 2, . . . ,M}, and M is a natural number.

Suppose that all agents are controlled under the same transition rate matrix Π =
[πσn]. The transition probabilities are satisfying

P
{
σ(τ + dτ) = n

∣∣ σ(τ) = σ
}

=

{
πσn dτ + o(dτ), σ 6= n,

1 + πσσ dτ + o(dτ), σ = n.
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For the elements in Π , for all σ 6= n, πσn > 0 and πσσ = −
∑M
n=1, n 6=σ πσn < 0. dτ is

the stopping time, which shows the stopping time for the systems to jump from state σ to
state n. o(dτ) is defined by limdτ→0 o(dτ)/dτ = 0.

At the same time, the dynamics model of the leader is described as

ṡ(τ) = Aσ(τ)s(τ) +Bσ(τ)g
(
s(τ)

)
, (2)

where s(τ) ∈ Rn denotes the state vector of the leader.
To achieve bounded identical consensus of NMJMASs under DAs, the control input

of agent i is constructed as

ui(τ) =

∞∑
k=1

c

{
N∑
j=1

[
−lij

(
xj(τ)− xi(τ)

)
+ ϑij(τ)zi(τ)

]
− di0

(
xi(τ)− s(τ)

)}
× f(τ − τk), (3)

where c shows the coupling strength, zi(τ) ∈ Rn, i = 1, 2, . . . , N , denotes an externally
injected attack signal of agent i. Z(τ) = [zT1 (τ), zT2 (τ), . . . , zTN (τ)] ∈ RN×N satisfies
‖Z(τ)‖2 6 z, and z is a positive constant. di0 denotes the coupling strength both agent
i and leader, at the same time, the coupling strength di0 > 0 if the leader can transmit
information to agent i, otherwise, di0 = 0. f(·) is the Dirac function, if τ = τk, then
f(·) = 1, otherwise, f(·) = 0. {τk}∞k=0 is the impulse sequence. ϑij(τ) is the Bernoulli
random variable and satisfies

P
{
ϑij(τ) = 1

}
= ρij , P

{
ϑij(τ) = 0

}
= 1− ρij ,

where it is assumed that ϑii(τ) = 0 and ρij ∈ [0, 1).

Remark 1. DAs occur randomly in the communication channel, and their randomness are
described as the independent random variable ϑij(τ). When the systems are subjected to
DAs at time τ , ϑij(τ) = 1, otherwise, ϑij(τ) = 0. ϑij(τ) and σ(τ) are independent of
each other.

Remark 2. In (3), the systems are subjected to DAs, where the attacker injects false
signal zi(τ) into the controller. Due to the limited energy, the attacker cannot launch
attacks arbitrarily, so it is assumed that the external injected signal is bounded, that is,
‖Z(τ)‖2 6 z.

The state vector error can be denoted as δi(τ) = xi(τ) − s(τ). When τ 6= τk,
f(τ − τk) = 0, one has ui(τ) = 0. Let g(δi(τ), s(τ)) = g(xi(τ)) − g(s(τ)). Because
δi(τ) = xi(τ)− s(τ), combining (1) and (2), one can obtain

δ̇i(τ) = ẋi(τ)− ṡ(τ)

= Aσ(τ)xi(τ) +Bσ(τ)g
(
xi(τ)

)
−Aσ(τ)s(τ)−Bσ(τ)g

(
s(τ)

)
= Aσ(τ)

(
xi(τ)− s(τ)

)
+Bσ(τ)

(
g
(
xi(τ)

)
− g
(
s(τ)

))
= Aσ(τ)δi(τ) +Bσ(τ)g

(
δi(τ), s(τ)

)
. (4)
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When τ = τk, f(τ − τk) = 1, one gets

ui(τ) = c

{
N∑
j=1

[
−lij

(
xj(τ)− xi(τ)

)
+ ϑij(τ)zi(τ)

]
− di0

(
xi(τ)− s(τ)

)}
. (5)

Because ∆δi(τk) = δi(τ
+
k ) − δi(τ

−
k ), δi(τk) = δi(τ

+
k ) = limh→0+ δi(τk + h) and

δi(τ
−
k ) = limh→0− δi(τk + h). One can derive

∆δi(τk) = δi(τk)− δi(τ−k )

=
(
xi(τk)− s(τk)

)
−
(
xi(τ

−
k )− s(τ−k )

)
= xi(τk)− xi(τ−k ) = ∆xi(τk) = ui(τ

−
k ).

According to (5), one can get

∆δi(τk) = c

N∑
j=1

[
−lij

(
xj(τ

−
k )− xi(τ−k )

)
+ ϑij(τ

−
k )zi(τ

−
k )
]

− cdi0
(
xi(τ

−
k )− s(τ−k )

)
= c

N∑
j=1

[
−lij

((
xj(τ

−
k )− s(τ−k )

)
−
(
xi(τ

−
k )− s(τ−k )

))
+ ϑij(τk)zi(τk)

]
− cdi0

(
xi(τ

−
k )− s(τ−k )

)
= −c

N∑
j=1

[
−lij

(
δj(τ

−
k )− δi(τ−k )

)
− di0δi

(
τ−k
)]

+ c

N∑
j=1

ϑij(τk)zi(τk). (6)

According to (4) and (6), the following error system is obtained:

δ̇i(τ) = Aσ(τ)δi(τ) +Bσ(τ)g
(
δi(τ), s(τ)

)
, τ 6= τk,

∆δi(τk) = −c
N∑
j=1

[
lij
(
δj(τ

−
k )− δi(τ−k )

)
+ di0δi(τ

−
k )
]

+ c

N∑
j=1

ϑij(τk)zj(τk).

(7)

Let δ(τ) = [δT1 (τ), δT2 (τ), . . . , δTN (τ)]T. Combining with δi(τ) = ∆δi(τk)+ δi(τ
−
k ),

(7) is rewritten as

δ̇i(τ) = (IN ⊗Aσ(τ))δ(τ) + (IN ⊗Bσ(τ))G
(
δ(τ), s(τ)

)
, τ 6= τk,

δ(τk) =
(
(IN − cH)⊗ In

)
δ(τ−k ) +

(
cΥ (τk)⊗ In

)
Z(τk),

(8)

where G(δ(τ), s(τ)) = [g(δ1(τ), s(τ))T, g(δ2(τ), s(τ))T, . . . , g(δi(τ), s(τ))T], H =
L + D, Υ (τk) = [ϑij(τk)]N×N . The expectation of the random matrix Υ (τk) can be
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denoted as E{Υ (τk)} = W , where

W =


0 w12 · · · w1N

w21 0 · · ·
...

...
...

. . .
...

wN1 wN2 · · · 0

 .
Assumption 1. (See [19].) For any x1, x2 ∈ Rn, there exists a constant ρ > 0 such that∥∥g(x1)− g(x2)

∥∥ 6 ρ‖x1 − x2
∥∥.

Assumption 2. (See [23].) The network communication topologies of MASs are con-
nected. There exists at least one path from the leader to other followers.

Lemma 1. (See [23].) Given permutation matrices A, B, and C such that[
A B
BT C

]
< 0,

it is equivalent to C < 0 and A−BC−1BT < 0.

Lemma 2. (See [23].) If there exist any real matrices A and B, any matrix C > 0, and
any constant ω > 0, A, B, and C have the appropriate dimensions, then the following
inequality is satisfied:

ATB +BTA 6 ω−1ATCA+ ωBTC−1B.

Definition 1. (See [6, 8].) The NMJMASs under DAs can achieve bounded identical
consensus, suppose that there exist a bounded constant φ > 0 and a setM such that for
any given initial state xi(0), s(0) ∈ Rn, δi(τ) = xi(τ)− s(τ) converges to the set

M =
{
δ(τ) ∈ RN×N

∣∣ E{‖δ(τ)‖2
}
< φ

}
when τ →∞.

Definition 2. (See [21].) For T > 0, τ > 0, and τ < T , the average value of impulsive
interval {τk+1 − τk} (k = 1, 2, . . . ) is denoted as Ta (Ta > 0), and assume that Ta is
bounded if there exists an integer N0 > 0 such that

T − τ
Ta

−N0 6 N(τ, T ) 6
T − τ
Ta

+N0,

where N(τ, T ) is the impulsive times appear within (τ, T ).

Definition 3. (See [19].) The NMJMASs under DoS attacks can achieve identical con-
sensus if the following inequality holds:

E
{∥∥δi(τ)

∥∥2} 6 γ exp(−%τ)E
{∥∥δi(0)

∥∥2}, i = 1, 2, . . . , N,

where γ > 0, % > 0 are both scalars, and % stands for the decay rate.
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3 Main results

3.1 The bounded identical consensus of NMJMASs under DAs

Theorem 1. According to Assumptions 1 and 2 listed above, the NMJMASs can achieve
bounded identical consensus, that is to say, the trajectory of error system (7) converges to
setM, where

M =

{
δ(τ)

∣∣ E{∥∥δ(τ)
∥∥2} 6

vσu
−1 exp((1−N0)βTa)

$(u−1 exp(βTa)− 1)

}
,

if there exist matrices Pσ > 0 (σ ∈M) and scalars β, ρ > 0, η > 0, $ > 0 such that the
following conditions hold:AσQσ +QσA

T
σ +BσB

T
σ + πσσQσ +Qσβ Qσ ℵ

∗ −ρ−2IN 0
∗ ∗ Σ

 < 0, (9)

lnu

Ta
< β, 0 < u < 1,

$I 6 Pσ 6 ηI, (10)
where

ℵ = (
√
πσ1Qσ,

√
πσ2Qσ, . . . ,

√
πσσ−1Qσ,

√
πσσ+1Qσ, . . . ,

√
πσMQσ),

Σ = −diag{Q1, . . . , Qσ−1, Qσ+1, . . . , QM}, Qσ = P−1σ ,

u = ϕ2
max(IN − cH) + ω−1,

vσ = ωc2zϕ2
max

{
WT(IN − cH)

}
η + zc2ϕ2

max

(
WTW

)
η.

Proof. At first, the Lyapunov function is constructed as follows:

V
(
δ(τ), τ, σ(τ)

)
= δT(τ)(IN ⊗ Pσ(τ))δ(τ). (11)

An infinitesimal operator A is defined by

AV
(
δ(τ), τ, σ(τ)

)
= lim

dτ→0+

1

dτ

{
E
[
V
(
δ(τ+dτ), τ + dτ, σ(τ+dτ)

) ∣∣ δ(τ), τ, σ(τ)
]

− V
(
δ(τ), τ, σ(τ)

)}
.

Define σ(τ) = σ (σ ∈ M). Applying the total probability formula as well as the
conditional expectation formula, one has

E
{
AV

(
δ(τ), τ, σ

)}
= He

{
δT(τ)(IN ⊗ Pσ)

[
(IN ⊗Aσ)δ(τ) + (IN ⊗Bσ)G

(
δ(τ), s(τ)

)]}
+ δT(τ)

z∑
n=1

πσn(IN ⊗ Pn)δ(τ). (12)
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Based on Assumption 1, it can be obtained the following:

2δ(τ)(IN ⊗ PσBσ)G
(
δ(τ), s(τ)

)
= 2

N∑
i=1

δi(τ)PσBσG
(
δi(τ), s(τ)

)
6

N∑
i=1

δTi (τ)PσBσB
T
σ Pσδi(τ) +GT

(
δi(τ), s(τ)

)
G
(
δi(τ), s(τ)

)
6

N∑
i=1

δTi (τ)PσBσB
T
σ Pσδi(τ) + ρ2δTi (τ)δi(τ)

= δTi (τ)(IN ⊗
(
PσBσB

T
σ Pσ + ρ2IN )

)
δi(τ). (13)

According to Lemma 1, for (9), one has

He(AσPσ) +

M∑
n=1

πσnPn + PσBσB
T
σ Pσ + ρ2IN + βPσ < 0.

Combine (9), (12), and (13), then

E
{
AV

(
δ(τ), τ, σ

)}
6 δT(τ)

[
IN ⊗

(
He(AσPσ) +

M∑
n=1

πσnPn + PσBσB
T
σ Pσ + ρ2IN

)]
δ(τ)

6 −βδT(τ)(IN ⊗ Pσ)δ(τ) = −βE
{
V
(
δ(τ), τ, σ

)}
. (14)

Then, by integrating (14), one gets

E
{
V
(
δ(τ), τ, σ

)}
6 exp

(
−β(τk − τk−1)

)
E
{
V
(
δ(τk−1), τk−1, σ

)}
, τ ∈ [τk−1, τk). (15)

Based on (8), one has

E
{
δT(τk)(IN ⊗ Pσ)δ(τk)

}
= E

{((
(IN − cH)⊗ In

)
δ(τ−k ) + (cΥτk ⊗ In)Z(τk)

)T
× (IN ⊗ Pσ)

((
(IN − cH)⊗ In)δ(τ−k ) +

(
cΥ (τk)⊗ In

)
Z(τk)

)}
= E

{
δT(τ−k )ΓT(IN ⊗ Pσ)Γδ(τ−k ) + δT(τ−k )ΓT(IN ⊗ Pσ)ζ(τk)

+ ζT(τk)(IN ⊗ Pσ)Γδ(τ−k ) + ζT(τk)(IN ⊗ Pσ)ζ(τk)
}
, (16)

where Γ = (IN − cH)⊗ In, ζ(τk) = (cΥ (τk)⊗ In)Z(τk). (16) is analyzed item by item
as follows.
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Based on the definition of Γ , one has

E
{
δT(τ−k )ΓT(IN ⊗ Pσ)Γδ(τ−k )

}
= E

{
δT(τ−k )

[
(IN − cH)T(IN − cH)⊗ Pσ

]
δ(τ−k )

}
6 ϕ2

max(IN − cH)E
{
V
(
δ(τ−k ), τ−k , σ

)}
. (17)

According to Lemma 2, it yields

E
{
δT(τ−k )ΓT(IN ⊗ Pσ)ζ(τk) + ζT(τk)(IN ⊗ Pσ)Γδ(τ−k )

}
6 ω−1E

{
δT(τ−k )(IN ⊗ Pσ)δ(τ−k )

}
+ ωZ(τk)T(cΥ (τk)⊗ In)T

{[
(IN − cH ⊗ In)(IN − cH ⊗ In)T

]
⊗ Pσ

}
×
(
cΥ (τk)⊗ In

)
Z(τk)

= ω−1E
{
V
(
δ(τ−k ), τ−k , σ

)}
+ ωc2zϕ2

max

{
WT(IN − cH)

}
λmax(Pσ), (18)

where z is a limited attack energy.
Based on the definition of ζ(τk), one gets

E
{
ζT(τk)(IN ⊗ Pσ)ζ(τk)

}
= E

{
Z(τk)T

(
cΥ (τk)⊗ In

)T
(IN ⊗ Pσ)

(
cΥ (τk)⊗ In

)
Z(τk)

}
6 zc2ϕ2

max

(
WTW

)
λmax(Pσ). (19)

Combining (17), (18), and (19), from (16) one gets

E
{
V
(
δ(τ), τ, σ

)}
6
(
ϕ2
max(IN − cH) + ω−1

)
E
{
V
(
δ(τ−k ), τ−k , σ

)}
+ ωc2zϕ2

max

{
WT(IN − cH)

}
λmax(Pσ)

+ zc2ϕ2
max

(
WTW

)
λmax(Pσ).

Let u = ϕ2
max(IN − cH) + ω−1, combining with (10), one has

vσ = ωc2zϕ2
max

{
WT(IN − cH)

}
λmaxη + zc2ϕ2

max

(
WTW

)
η, (20)

then one can obtain that

E
{
V
(
δ(τk), τk, σ

)}
= uE

{
V
(
δ(τ−k ), τ−k , σ)

}
+ vσ. (21)

Based on (15) and (21), it yields

E
{
V
(
δ(τ), τ, σ

)}
6 exp

(
−β(τ − τk−1)

)
×E

{
V
(
δ(τk−1), τk−1, σ)

}
, τ ∈ [τk−1, τk),

E
{
V
(
δ(τk), τk, σ

)}
= uE

{
V
(
δ(τ−k ), τ−k , σ

)}
+ vσ.

(22)

When τ ∈ [τ0, τ1), the following inequality holds:

E
{
V
(
δ(τ), τ, σ

)}
6 exp

(
−β(τ − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
. (23)
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Thus, in terms of (22) and (23), one has

E
{
V
(
δ(τ1), τ1, σ

)}
6 u exp

(
−β(τ1 − τ0)

)
E
{
V
(
δ(τ0), τ0, σ)

}
+ vσ.

When τ ∈ [τ1, τ2), one can obtain that

E
{
V
(
δ(τ), τ, σ

)}
6 u exp

(
−β(τ − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+ vσ exp

(
−β(τ − τ1)

)
,

E
{
V
(
δ(τ−2 ), τ−2 , σ

)}
6 u exp

(
−β(τ2 − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+ vσ exp

(
−β(τ2 − τ1)

)
,

E
{
V
(
δ(τ2), τ2, σ

)}
6 u2 exp

(
−β(τ2 − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+ uvσ exp

(
−β(τ2 − τ1)

)
+ vσ.

When τ ∈ [τ2, τ3), one gets

E
{
V
(
δ(τ), τ, σ

)}
6 u2 exp

(
−β(τ − τ0)

)
E
{
V
(
δ(τ0), τ0, σ(τ0)

)}
+ uvσ exp

(
−β(τ − τ1)

)
+ vσ exp

(
−β(τ − τ2)

)
.

Suppose that when τ ∈ [τk−1, τk), the following formulas hold:

E
{
V
(
δ(τ), τ, σ

)}
6 uk−1 exp

(
−β(τ − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+ uk−2vσ exp

(
−β(τ − τ1)

)
+ · · ·

+ vσ exp
(
−β(τ − τk−1)

)
,

E
{
V
(
δ(τ−k ), τ−k , σ)

}
6 uk−1 exp

(
−β(τk − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+ uk−2vσ exp

(
−β(τk − τ1)

)
+ · · ·

+ vσ exp
(
−β(τk − τk−1)

)
,

E
{
V
(
δ(τk), τk, σ

)}
6 uk exp

(
−β(τk − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+ uk−1vσ exp

(
−β
(
τk − τ1)

)
+ uk−2vσ exp

(
−β(τk − τ2)

)
+ · · ·

+ vσ exp
(
−β(τk − τk−1)

)
. (24)

Thus, when τ ∈ [τk, τk+1), in terms of (22) and (24), the following formula holds:

E
{
V
(
δ(τ), τ, σ

)}
6 exp

(
−β(τ − τk)

)
E
{
V (δ(τk), τk, σ

)}
6 exp

(
−β(τ − τk)

)[
uk exp

(
−β(τk − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+ uk−1vσ exp

(
−β(τk − τ1)

)
+ uk−2vσ exp

(
−β(τk − τ2)

)
+ · · ·

+ vσ exp
(
−β(τk − τk−1)

)]
= uk exp

(
−β(τ − τ0)

)
E
{
V (δ(τ0), τ0, σ

)}
+ uk−1vσ exp

(
−β(τ − τ1)

)
+ uk−2vσ exp

(
−β(τ − τ2)

)
+ · · ·

+ vσ exp
(
−β(τ − τk)

)
.
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According to mathematical induction, for any τ ∈ [τk, τk+1) (k = 1, 2, . . . ), the follow-
ing inequality holds:

E
{
V
(
δ(τ), τ, σ

)}
6 uk exp

(
−β(τ − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+ uk−1vσ exp

(
−β(τ − τ1)

)
+ uk−2vσ exp

(
−β(τ − τ2)

)
+ · · ·

+ vσ exp
(
−β(τ − τk)

)
. (25)

If 0 < u < 1, for τ ∈ [τk, τk+1), based on Definition 2 and (25), one gets

E{V
(
δ(τ), τ, σ

)
}

6 u(τ−τ0)/Ta−N0 exp
(
−β(τ − τ0)

)
E{V (δ(τ0), τ0, σ)}

+ vσu
(τ−τ0)/Ta−N0−1 exp

(
−β(τ − τ0)

)
exp
(
β(τ1 − τ0)

)
+ vσu

(τ−τ0)/Ta−N0−2 exp
(
−β(τ − τ0)

)
exp
(
β(τ2 − τ0)

)
+ · · ·

+ vσu
(τ−τ0)/Ta−N0−k exp

(
−β(τ − τ0)

)
exp
(
β(τk − τ0)

)
. (26)

Therefore, (26) can be reformulated as

E
{
V
(
δ(τ), τ, σ

)}
6 u(τ−τ0)/Ta−N0 exp

(
−β(τ − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+ vσu

(τ−τ0)/Ta−N0−1 exp
(
−β(τ − τ0)

)
exp(βTa)

+ vσu
(τ−τ0)/Ta−N0−2 exp

(
−β(τ − τ0)

)
exp(2βTa) + · · ·

+ vσu
(τ−τ0)/Ta−N0−k exp

(
−β(τ − τ0)

)
exp(kβTa)

= u(τ−τ0)/Ta−N0 exp
(
−β(τ − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+ vσ exp

(
−β(τ − τ0)

)u(τ−τ0)/Ta−N0−1 exp(βTa)(1− u−k exp(kβTa))

1− u−1 exp(βTa)
. (27)

Based on Definition 2 and (27), one gets

E
{
V
(
δ(τ), τ, σ

)}
6 u(τ−τ0)/Ta−N0 exp

(
−β(τ − τ0)

)
E
{
V
(
δ(τ0), τ0, σ

)}
+
vσ exp(−β(τ − τ0 − Ta))u(τ−τ0)/Ta−N0−1

1− u−1 exp(βTa)

+
vσu

−1 exp((1−N0)βTa)

u−1 exp(βTa)− 1
. (28)

When 0 < u < 1, the inequality lnu/Ta − β < 0 holds, the right side of (28)
will converge to vσu−1 exp(1−N0)βTa/(u

−1 exp(βTa)− 1) as τ →∞. Furthermore,
according to (11), one gets

E
{∥∥δ(τ)

∥∥2} 6
1

$
E
{
V
(
δ(τ), τ, σ

)}
.
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When τ →∞, the error system (8) is derived as

M =

{
δ(τ) ∈ RN×N |E{‖δ(τ)‖2} 6 1

$

vσu
−1 exp(1−N0)βTa
u−1 exp(βTa)− 1

}
. (29)

Consequently, depending on Definition 1, the bounded leader-following identical con-
sensus of the NMJMASs under DAs can be achieved. This completes the proof.

Remark 3. According to (20) and (29), the attack energy z and the average value of
impulsive interval Ta influence the error bound. The smaller z will yield the smaller vσ ,
and then the smallerM will be obtained. From parameter vσ it can be seen that the DAs
have an influence on the design of the impulse sequence.

3.2 The identical consensus of NMJMASs under DoS attacks

In this section, the NMJMASs are suffered from DoS attacks, which will cause the
agents unable to communicate with each other. In order to achieve identical consensus of
NMJMASs under DoS attacks, in what follows, the control input of agent i is constructed
as

ui(τ) =


∑∞
k=1 c[

∑N
j=1−lijxj(τ)− di0(xi(τ)− s(τ))]f(τ − τk),

τ ∈ [hk, hk + tk),

0, τ ∈ [hk + tk, hk+1),

(30)

where the meanings of c, lij , di0, and τk are the same as those explained before. The
time interval is divided into intervals [hk, hk+1). tk is the time when the systems can
communicate normally in the interval [hk, hk+1).

ui(τ) =

{
c
∑N
j=1−lijxj(τ)− cdi0(xi(τ)− s(τ)) if τ = τk, f(·) = 1,

0 if τ 6= τk, f(·) = 0.

Remark 4. In (30), a connectivity recovery mechanism is used for the case where the
NMJMASs are subjected to DoS attacks. At the moment hk+ tk, the NMJMASs suffered
from DoS attacks, which takes some time to repair or recover. At time hk+1, the effects of
DoS attacks are eliminated. The interval [hk, hk + tk) indicates that the systems can run
normally, the interval [hk + tk, hk+1) indicates that the systems are in recovery time, and
there is no impulse in [hk + tk, hk+1). The next time interval [hk+1, hk+1 + tk+1), the
network topology of the multi-agent works properly before the next DoS attacks occurs
to ensure that the systems can function normally.

Based on (1), (2), and (30), when τ ∈ [hk, hk + tk), the error system is obtained as
follows:

δ̇i(τ) = Aσ(τ)δi(τ) +Bσ(τ)g
(
δi(τ), s(τ)

)
, τ 6= τk,

∆δi(τk) = −c
N∑
j=1

lijδj(τ
−
k )− cdi0δi(τ−k ).
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Theorem 2. Under Assumptions 1 and 2, the NMJMASs subjected to DoS attacks achieve
identical consensus if there exist matrices Pσ > 0 (σ ∈ M) and scalars β, ρ > 0 such
that the following conditions hold:AσQσ +QσA

T
σ +BσB

T
σ + πσσQσ +Qσβ Qσ ℵ

∗ −ρ−2IN 0
∗ ∗ Σ

 < 0, (31)

Tb
τ

6
ε+ (−β + ln ξ

Ta
)

ln ξ
Ta

, (32)

ln ξ

Ta
< β, (33)

0 < ξ < 1, (34)
ε > 0, (35)

where

ℵ =
(√
πσ1Qσ,

√
πσ2Qσ, . . . ,

√
πσσ−1Qσ,

√
πσσ+1Qσ, . . . ,

√
πσMQσ

)
,

Σ = −diag{Q1, . . . , Qσ−1, Qσ+1, . . . , QM}, Qσ = P−1σ ,

ξ = ϕ2
max(IN − cH).

Proof. Construct the same Lyapunov function as in Theorem 1, therefore, one can get
that the Lyapunov function is constructed as follows:

V
(
δ(τ), τ, σ(τ)

)
= δT(τ)(IN ⊗ Pσ(τ))δ(τ).

In the next step, define σ(τ) = σ (σ ∈ M), for τ 6= τk, by the total probability
formula as well as the conditional expectation formula, one gets

E
{
AV

(
δ(τ), τ, σ

)}
= He

{
δT(τ)(IN ⊗ Pσ)

[
(IN ⊗Aσ)δ(τ)

+ (IN ⊗Bσ)G
(
δ(τ), s(τ)

)]}
+ δT(τ)

z∑
n=1

πσn(IN ⊗ Pn)δ(τ). (36)

According to Assumption 1, then

2δ(τ)(IN ⊗ PσBσ)G
(
δ(τ), s(τ)

)
6 δTi (τ)

(
IN ⊗ (PσBσB

T
σ Pσ + ρ2IN )

)
δi(τ). (37)

Based on Lemma 1, according to (31), (36), and (37),

E
{
AV

(
δ(τ), τ, σ

)}
6 δT(τ)

[
IN ⊗

(
He(AσPσ) +

M∑
n=1

πσnPn + PσBσB
T
σ Pσ + ρ2IN

)]
δ(τ)

6 −βδT(τ)(IN ⊗ Pσ)δ(τ) = −βE
{
V
(
δ(τ), τ, σ

)}
. (38)
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Then, by integrating (38), it is easy to obtain

E
{
V
(
δ(τ), τ,m

)}
6 exp

(
−β(τ − τk−1)

)
×E

{
V
(
δ(τk−1), τk−1,m

)}
, τ ∈ [τk−1, τk).

In what follows, for τ = τk, by calculation, the following formula can be obtained:

E
{
V
(
δ(τk), τk, σ

)}
= E

{
δT(τk)(IN ⊗ Pσ)δ(τk)

}
= E

{[(
(IN − cH)⊗ In

)
δ(τ−k )

]T
(IN ⊗ Pσ)

[(
(IN − cH)⊗ In

)
δ(τ−k )

]}
= E

{
δT(τ−k )

(
(IN − cH)⊗ In

)T
(IN ⊗ Pσ)

(
(IN − cH)⊗ In

)
δ(τ−k )

}
6 ϕ2

max(IN − cH)E
{
V
(
δ(τ−k ), τ−k , σ

)}
= ξE

{
V
(
δ(τ−k ), τ−k , σ

)}
.

If τ ∈ [hk, hk + tk), based on (33), one has

Q(τ, s) = exp(τ − s)
∏

s6τk6τ

ξ 6 ξ−N0 exp

((
−β +

ln ξ

Ta

)
(τ − s)

)
,

then

E
{
V
(
δ(τ), τ, σ

)}
6 Q(τ, hl)E

{
V
(
δ(hl), hl, σ

)}
= ξ−N0 exp

((
−β +

ln ξ

Ta

)
(τ − hl)

)
E
{
V
(
δ(hl), hl, σ

)}
. (39)

When τ ∈ [hk−1 + tk−1, hk), because there exist DoS attacks, the impulsive control
is invalid. Then one can obtain that

E
{
V
(
δ(τ), τ, σ

)}
6 exp

(
−β
(
τ − hl − tl

))
E
{
V
(
δ(hl−1), hl−1, σ

)}
. (40)

For τ ∈ [h0, h0 + t0), according to (39), it can deduce

E
{
V
(
δ(τ), τ, σ

)}
6 ξ−N0 exp

((
−β +

ln ξ

Ta

)
(τ − h0)

)
E
{
V
(
δ(h0), h0, σ

)}
. (41)

For τ ∈ [h0 + t0, h1), combining (40) and (41), one has

E
{
V
(
δ(τ), τ, σ

)}
6 ξ−N0 exp

(
−β(τ − h0 − t0)

)
exp

((
−β +

ln ξ

Ta

)
t0

)
×E

{
V
(
δ(h0), h0, σ

)}
. (42)

For τ ∈ [h1, h1 + t1), based on (39) and (42), one gets

E
{
V
(
δ(τ), τ, σ

)}
6 ξ−N0 exp

(
−β(τ − h0 − t0)

)
× exp

((
−β +

ln ξ

Ta

)
(τ − h1 + t0)

)
E
{
V
(
δ(h0), h0, σ

)}
. (43)
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For τ ∈ [h1 + t1, h2), according to (40) and (43), it yields

E
{
V
(
δ(τ), τ, σ

)}
6 ξ−N0 exp

(
−β(τ − h0 − t0)

)
× exp

((
−β +

ln ξ

Ta

)
(t0 + t1)

)
E
{
V
(
δ(h0), h0, σ

)}
.

Assuming τ ∈ [hl−1, hl−1 + tl−1), the following inequality

E
{
V
(
δ(τ), τ, σ

)}
6 ξ−N0 exp

(
−β(τ − h0 − t0)

)
× exp

((
−β +

ln ξ

Ta

)(
τ − hl−1 + t0 + t1 + · · ·+ tl−2

))
×E

{
V v(δ(h0), h0, σ

)}
(44)

holds. Then, for τ ∈ [hl−1 + tl−1, hl), from (40) and (44) one can derive the inequality
as follows:

E
{
V
(
δ(τ), τ, σ

)}
6 exp

(
−β
(
τ − hl−1 − tl−1

))
E
{
V
(
δ(hl−1), hl−1, σ

)}
6 exp

(
−β(τ − hl−1 − tl−1)

)
ξ−N0 exp

(
−β(hl−1 − tl−1 − h0 − t0)

)
× exp

((
−β +

ln ξ

Ta

)
(hl−1 + tl−1 − hl−1 + t0 + t1 + · · ·+ tl−2)

)
×E

{
V
(
δ(h0), h0, σ

)
= ξ−N0 exp

(
−β(τ − h0 − t0)

)
exp

((
−β +

ln ξ

Ta

)
(t0 + t1 + · · ·+ tl−1)

)
×E

{
V (δ(h0), h0, σ)

}
. (45)

Therefore, for τ ∈ [hl, hl + tl), according to (39) and (45), one can derive the
following inequality:

E
{
V
(
δ(τ), τ, σ

)}
6 ξ−N0 exp

(
−β(τ − hl)

)
E
{
V
(
δ(hl), hl, σ

)}
6 ξ−N0 exp

(
−β(τ − hl)

)
ξ−N0 exp

(
−β(τ − h0 − t0)

)
× exp

((
−β +

ln ξ

Ta

)
(t0 + t1 + · · ·+ tl−1)

)
E
{
V (δ(h0), h0, σ)

}
= ξ−N0 exp

(
−β(τ − h0 − t0)

)
× exp

((
−β +

ln ξ

Ta

)
(τ − hl + t0 + t1 + · · ·+ tl−1)

)
×E

{
V
(
δ(h0), h0, σ

)}
.
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Based on mathematical induction, for any τ ∈ [hl, hl+tl), l = 1, 2, . . . , the following
inequality

E
{
V
(
δ(τ), τ, σ

)}
6 ξ−N0 exp

(
−β(τ − h0 − t0)

)
× exp

((
−β +

ln ξ

Ta

)
(τ − hl + t0 + t1 + · · ·+ tl−1)

)
×E

{
V
(
δ(h0), h0, σ

)}
(46)

holds. Let Tb = θ0 + θ1 + · · · + θl−1, where θi indicates the total attack duration of
interval [hi + ti, hi+1) (i = 0, . . . , l − 1). Combining with (46), one has

E
{
V
(
δ(τ), τ, σ

)}
6 ξ−N0 exp

(
−β(θ0 + θ1 + · · ·+ θl−1)

)
× exp

((
−β +

ln ξ

Ta

)
(τ − hl + t0 + t1 + · · ·+ tl−1)

)
×E

{
V (δ(h0), h0, σ)

}
6 ξ−N0 exp

(
−βTb) exp

((
−β +

ln ξ

Ta

)
(τ − Tb)

)
×E

{
V (δ(h0), h0, σ)

}
. (47)

According to (32), (34), and (35), it holds(
−β +

ln ξ

Ta

)
(τ − Tb)− βTb 6 −ετ, (48)

thus, according to (47) and (48), one has

E
{
V
(
δ(τ), τ, σ

)}
6 ξ−N0 exp

(
−ετ)E

{
V
(
δ(h0), h0, σ

)}
.

Combining with (35), the state decay estimation of the identical consensus tracking
error is obtained as follows:

E
{∥∥δi(τ)

∥∥2} 6
ξ−N0 exp(−ετ)E{V (δ(h0), h0, σ)}

$
.

Consequently, according to Definition 3, the leader-following identical consensus of
the NMJMASs under DoS attacks can be achieved. So the proof is completed.

Remark 5. According to (34), an appropriate coupling strength c is selected within
a certain range to achieve the leader-following identical consensus of NMJMASs under
DoS attacks.

Remark 6. Compared with [8,23], the DoS attacks were not considered. The MASs were
considered without Markov jump parameters in [7, 8, 21, 23, 26]. Compared with [15],
impulse was not considered.
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4 Numerical examples

Example 1. Consider that NMJMASs have one leader (node 0) as well as four followers
(nodes 1, 2, 3, and 4). The network communication topology of multi-agent is described
in Fig. 1. At the same time, the topology diagram is a directed topology diagram. Suppose
M = {1, 2}. Let the constant coefficient matrices A1, A2, B1, and B2 be as follows:

A1 =

−1.1 2 0
2 −1.3 0
4 0 −

 , B1 =

1.14 −1.4 −1.5
−1.4 1.16 −1.0
−1.1 2.0 1.16

 ,
A2 =

0.71 −1.9 0.03
2.1 −0.9 0.01
3.5 0.04 −1.5

 , B2 =

−1.65 −1.8 2.8
−1.16 1.1 −0.3

0.7 −2.4 1.2

 ,

Π =

−0.3 0.1 0.2
0.4 −0.6 0.2
0.3 0.2 −0.5

 .
Assume that the state dimension of each agent is 3, then xi(τ) = [xi1, xi2, xi3]T ∈
R3, i = 1, 2, 3, 4. The nonlinear function fi(x(τ)) = (tanh(xi1(τ)), tanh(xi2(τ)),
tanh(xi3(τ)))T. It is assumed that the initial states are described by

s0(0) = [0.2,−0.1, 0.1]T,

x1(0) = [1.2,−0.7, 2.5]T, x2(0) = [1, 1.2,−1.5]T,

x3(0) = [0.4,−1,−2]T, x4(0) = [−1, 1.2, 0.1]T.

In terms of the communication topological diagram Fig. 1, it is easy to obtain the adja-
cency matrix D = diag([1, 0, 1, 0]) of the leader and the corresponding Laplacian matrix

L =


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 −1 0 2

 .
With other parameters c = 0.4, ω = 15, z = 1.2, $ = 0.058, η = 1.9, ρ = 8.5, and
β = 10.21, according to Theorem 1, one obtains Ta < 0.884. Then the impulsive interval
Ta = 0.884, and W is given as

W =


0 0.5 0 0.2
0 0 0.2 0
0 0.4 0 0

0.4 0 0.6 0

 .
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Figure 1. The communication topological structure of NMJMASs under DAs.

Figure 2. The jumping mode of Markov
chain σ(τ).

Figure 3. The trajectory diagram of the
leader.

Figure 4. The trajectory diagram of the first
component of the four agents.

Based on Theorem 1, one obtains u = 0.954 and υσ = 1.99, then the error boundary is
0.00411. After verification, all conditions of Theorem 1 are satisfied. Figure 2 stands for
the jumping mode of Markov chain σ(τ). Figure 3 describes the trajectory diagram of the
leader. Figure 4 shows the trajectory diagram of the first variables of the four followers,
the trajectories of the other two vector components are the same as those of the first
component. Figure 5 stands for the trajectory diagram of the error systems. According to
the simulation results, the bounded identical consensus of NMJMASs under DAs can be
achieved. Therefore, it is proved that the result of Theorem 1 is correct and the method is
effective.
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(a) δ1m(τ) (b) δ2m(τ)

(c) δ3m(τ) (d) δ4m(τ)

Figure 5. The trajectory diagram of the error systems.

Example 2. Consider that NMJMASs have one leader (node 0) as well as four followers
(nodes 1, 2, 3, and 4). The network communication topology of multi-agent is shown in
Fig. 6. At the same time, the topology diagram is a directed topology diagram. Suppose
M = {1, 2}. Let the constant coefficient matrices A1, A2, B1, and B2 be as follows:

A1 =

−1.1 2 0
2 −1.3 0
4 0 −1

 , B1 =

1.14 −1.4 −1.5
−1.4 1.16 −1.0
−1.1 2.0 1.16

 ,
A2 =

0.71 −1.9 0.03
2.1 −0.9 0.01
3.5 0.04 −1.5

 , B2 =

−1.65 −1.8 2.8
−1.16 1.1 −0.3

0.7 −2.4 1.2

 ,

Π =

−0.4 0.3 0.1
0.1 −0.5 0.4
0.4 0.2 −0.6

 .
Assume that the state dimension of each agent is 3, then xi(τ) = [xi1, xi2, xi3]T ∈
R3, i = 1, 2, 3, 4. The nonlinear function fi(x(τ)) = (tanh(xi1(τ)), tanh(xi2(τ)),
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Figure 6. The communication topological structure of NMJMASs under DoS attacks.

Figure 7. The jumping mode of Markov chain
σ(τ).

Figure 8. The trajectory diagram of the leader.

tanh(xi3(τ)))T. It is assumed that the initial states are described as follows:

s0(0) = [0.2,−0.1, 0.1]T,

x1(0) = [1.2,−0.7, 2.5]T, x2(0) = [1, 1.2,−1.5]T,

x3(0) = [0.4,−1,−2]T, x4(0) = [−1, 1.2, 0.1]T.

From the communications topology diagram in Fig. 6 it can be obtained that D =
diag([1, 0, 0, 0]) and the corresponding Laplacian matrix

L =


1 0 0 −1
0 1 −1 0
−1 −1 2 0
−1 −1 0 2

 .
With other parameters c = 0.1, ε = 7.5, ξ = 0.981, β = 10.21, and ρ = 5.8, according
to (33) in Theorem 2, one obtains Tb < 0.002. Based on (32), one has

Ta
τ

6
ε+ (−β + ln ξ

Tb
)

ln ξ
Tb

6 0.7.

After verification, all conditions of Theorem 2 are satisfied. Figure 7 stands for the jump-
ing mode of Markov chain σ(τ). Figure 8 shows the trajectory diagram of the leader.
Figure 9 describes the trajectory diagram of the first variables of the four followers,
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Figure 9. The trajectory diagram of the first component of the four agents.

(a) δ1m(τ) (b) δ2m(τ)

(c) δ3m(τ) (d) δ4m(τ)

Figure 10. The trajectory diagram of the error systems.

the trajectories of the other two vector components are the same as those of the first
component. Figure 10 shows that the trajectory diagram of the error systems tends to zero
within both the leader and followers, so the NMJMASs under DoS attacks can achieve
identical consensus. Thus, it is shown that the result of Theorem 2 is correct and the
method is valid.
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5 Conclusion

The issue of leader-following identical consensus for NMJMASs with impulse under DAs
or DoS attacks has been addressed. Based on the Lyapunov stability theory as well as
stochastic analysis method, sufficient conditions of the identical consensus for MASs
have been obtained by using the impulsive control strategy, which generalizes the results
of some existing literatures. At last, two numerical simulations have been given to prove
the correctness and validity of the results. We will be concerned with the leader-following
identical consensus for NMASs with random communication topology and subjected to
DAs or DoS attacks. Furthermore, the partial component consensus and lag consensus of
NMASS will be studied.
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