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Abstract. In this paper, a fractional density-dependent prey–predator model has been considered.
Certain reading of local and global stabilities of an equilibrium point of a system was extracted
and conducted by applying fractional systems’ stability theorems along with Lyapunov functions.
Meanwhile, the persistence of the aforementioned system has been discussed and claimed to
imply a local asymptotic stability for the given positive equilibrium point. Moreover, the presented
model was extended to a periodic impulsive model for the prey population. Such an expansion
was implemented through the periodic catching of the prey species and the periodic releasing of
the predator population. By studying the effect of changing some of the system’s parameters and
drawing their bifurcation diagram, it was observed that different periodic solutions appear in the
system. However, the effect of an impulse on the system subjects the system to various dynamic
changes and makes it experience behaviors including cycles, period-doubling bifurcation, chaos
and coexistence as well. Finally, by comparing the fractional system with the classic one, it has
been concluded that the fractional system is more stable than its classical one.

Keywords: prey–predator model, impulsive, stability, Lyapunov function, Caputo derivative,
bifurcation, chaos, Beddington–DeAngelis functional response.

1 Introduction

The stability of the ecological systems is one of the essential topics in biological math-
ematics. In population models, the functional response of the predator to prey density
indicates changes in prey density per unit time for each predator [7,11]. This type of func-
tion response is similar to the Holing II function response with the additional assumption
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of predators’ mutual interference [8]. The behavior of models with predator-dependent
functional responses may be distinguishable from prey-dependent functional responses
[16,20]. We assume the prey–predator model with the Beddington–DeAngelis functional
response [12, 18, 19] and density dependent predator as follows:

dx

dt
= x

(
a− bx− βy

µ+ ηx+ γy

)
,

dy

dt
= y

(
−σ +

ξx

µ+ ηx+ γy

)
,

(1)

where all the parameters are positive, x(t) and y(t) indicate the population density of the
prey and the predator. For biological description of the parameters, see [12, 18, 19].

Fractional calculus has attracted much attention due to its many applications in science
and engineering. For example, the behavior of many physical and genetic phenomena is
memory driven and therefore is described by fractional models [3–6, 9].

The Caputo derivative with a fractional order α of x(t) is defined by

dα

tiα
x(t) := J1−α d

dt
x(t), 0 < α 6 1,

where Jα is the Riemann–Liouville integral operator defined by

Jαx(t) :=
1

Γ(α)

t∫
0

(t− τ)α−1x(τ) dτ

in which Γ(·) is the Eulers gamma function. For α = 0, we set Jα := Id , the identity
operator.

Consider the following system:

dαx(t)

dtα
= f

(
x(t)

)
, 0 < α < 1, (2)

with the initial condition x(0) = x0, where x0, x(t) ∈ Rn, and f : Rn → Rn.
In this paper, by applying the fractional derivative on (1), we reach the following

fractional model, which is equipped with the Caputo fractional derivative:

dα

dtα
x(t) = x

(
a− bx− βy

µ+ ηx+ γy

)
,

dα

dtα
y(t) = y

(
−σ +

ξx

µ+ ηx+ γy

)
,

(3)

where all of the parameters are positive and α ∈ (0, 1).
When η = γ = 0 and µ > 0, (1) is reduced to Lotka–Volterra model.
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When η = 1, γ = 0, system (1) will be the following Kolmogorov-type prey–predator
model with Holling type II functional response:

dα

dtα
x(t) = x

(
a− bx− βy

µ+ x

)
,

dα

dtα
y(t) = y

(
−σ +

ξx

µ+ x

)
.

When µ = 0, η = 1, system (1) turns into the following ratio-dependent prey–predator
model:

dα

dtα
x(t) = x

(
a− bx− βy

γy + x

)
,

dα

dtα
y(t) = y

(
−σ +

ξx

γy + x

)
.

The purpose is to investigate the dynamics of (3), which is done through the Lyapunov
method. In the following, we transform this model into a periodic impulsive model by
periodically catching the prey population and releasing the predator population, and we
examine the effect of the parameter changes on the model.

This paper is structured as follows. In Section 2, the local stability analysis of the
equilibrium points of the system is discussed. In Section 3, the system persistence and
global stability conditions of the system are presented using the Lyapunov method. In
Section 4, by adding periodic impulse to the model, due to the control of the population
of some species, we introduce a new population model and perform numerical analysis
on this model. In Section 5, a conclusion is presented.

2 Stability analysis

We start our analysis by calling the next theorem.

Theorem 1. (See [22].) Consider

dαx(t)

dtα
= Ax(t), 0 < α < 1,

where A is an arbitrary constant n× n matrix.

(i) The solution x(t) = 0 of the system is asymptotically stable if and only if all
eigenvalues λj (j = 1, 2, . . . , n) of A satisfy | arg(λj)| >
alphaπ/2.

(ii) The solution x(t) = 0 is stable if and only if the eigenvalues satisfy |arg(λj)| >
απ/2 and all eigenvalues with | arg(λj)| = απ/2 have a geometric multiplicity
that coincides with their algebraic multiplicity (i.e., an eigenvalue that is an l-fold
zero of the characteristic polynomial has l linearly independent eigenvectors).

IfE is an equilibrium point of (2) and all of the eigenvalues λ(Df(E)) of the Jacobian
matrix Df(E) at the equilibrium point E satisfy λ(Df(E)) 6=0 and |arg(λ(Df(E)))| 6=
απ/2, then we call E a hyperbolic equilibrium point.
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We pay attention of the following theorem that is the fractional type of the Hartman–
Grobman theorem.

Theorem 2. (See [17].) Suppose that E is a hyperbolic equilibrium point of (2), then
f(x) is topologically equivalent with its linearization Df(E)x in the neighborhood of
the point E.

Theorem 3. If ξ < ση, then the equilibrium pointE1 = (a/b, 0) is locally asymptotically
stable.

Proof. The Jacobian evaluated at (a/b, 0) has two eigenvalues λ1 = −a, λ2 = −σ−aξ/
(aη + bµ). Negative condition of the eigenvalue λ2 implies that σbµ + a(ση − ξ) > 0,
i.e., ξ < ση. This completes the proof.

In the following, a positive equilibrium of (3) is denoted as E. The equilibrium point
E satisfies the following algebraic equation:

(a− bx)(µ+ ηx+ γy)− βy = 0,

(−σ)(µ+ ηx+ γy) + ξx = 0.

It is easy to check that if the condition

(ξ − ση)
a

b
> σµ (4)

holds, then system (3) has a positive equilibrium point.
Let x(t) = x+X(t), y(t) = y + Y (t), then linearized of (3) is

dα

dtα
x(t) = x

(
a11X(t) + a12Y (t)

)
,

dα

dtα
y(t) = y

(
a21X(t) + a22Y (t)

)
,

where

a11 =
βηy

(µ+ ηx+ γy)2
− b, a12 = − β(µ+ ηx)

(µ+ ηx+ γy)2
< 0,

a21 =
ξ(µ+ γy)

(µ+ ηx+ γy)2
> 0, a22 = − ξγx

(µ+ ηx+ γy)2
< 0.

Theorem 4. If ϑ2 > 0, ϑ1 + 2
√
ϑ2 cos(απ/2) > 0, then the positive equilibrium point

E = (x, y) of (3) is locally asymptotically stable, where

ϑ1 =
bξ2x2 − βyησ2 + yγσ2ξ

xξ2
,

ϑ2 =
yσ2(x2bξγ − xβση − yβσγ + xβξ)

ξ2(x)2
.
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Proof. The Jacobian matrix of system (3) computed at E is given by

J |E =

x(−b+ βyη
(ηx+γy+µ)2 ) − xβ(ηx+µ)

(ηx+γy+µ)2

yξ(γy+µ)
(ηx+γy+µ)2 − yξxγ

(ηx+γy+µ)2

 .

Since µ+ ηx+ γy = ξx/σ, we get

J |E =

x(−b+ βyσ2η
ξ2(x)2 ) x(−βσξx + yσ2βγ

ξ2(x)2 )

y(σx −
σ2η
ξx ) −yσ

2γ
ξx

 .

The characteristic equation of J |E is

P (λ;ϑ1, ϑ2) = λ2 + ϑ1λ+ ϑ2 = 0. (5)

Suppose that | arg(λ)| = απ/2. By substituting λ = reßαπ/2 into (5), we deduce that

r2 sin(απ) + ϑ1r sin
απ

2
= 0,

r2 cos(απ) + ϑ1r cos
απ

2
+ ϑ2 = 0.

Then we get

ϑ1 = −2r cos
απ

2
6 0, (6)

ϑ2 = r2 > 0. (7)

From (6) we obtain r = −ϑ1/(2 cos(απ/2)). By substituting r into (7), we get ϑ2 = ϑ2
1/

(4 cos2(απ/2)), i.e.,

ϑ1 + 2
√
ϑ2 cos

απ

2
= 0.

The equilibrium point E is locally asymptotically stable if all the zeros λi, i = 1, 2, of (5)
satisfy |arg(λi)| > απ/2. Thus, E is locally asymptotically stable if and only if ϑ2 and
ϑ1 + 2

√
ϑ2 cos(απ/2) > 0.

Notice that due to the characteristic polynomial, if βηy/(µ+ ηx+ γy)2 < b, then for
all α ∈ (0, 1], the equilibrium point E is locally asymptotically stable.

3 Fractional system persistence

In this section, the persistency of (3) is investigated, which means that all the solutions
starting from an interior equilibrium point of the positive area R2

+ stay strictly positive
and do not approach any boundary of the area as t → ∞. This convinces us that all
populations survive for all future times. First, we present the following lemma.

Nonlinear Anal. Model. Control, 28(6):1103–1119, 2023
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Lemma 1. Suppose that x(t) ∈ C1(R+) and α ∈ (0, 1). Then

dα

dtα
x(t)− x(t)

dα

dtα
lnx(t) 6 0 ∀t > 0. (8)

Proof. We have

dα

dtα
lnx(t) =

1

Γ(1− α)

t∫
0

(t− τ)−α
ẋ(τ)

x(τ)
dτ.

It is enough to prove the following equation:

t∫
0

(t− τ)−αẋ(τ)
x(τ)− x(t)

x(τ)
dτ 6 0. (9)

Equation (9) turn into

t∫
0

(t− τ)−αẇ(τ)x(t)

(
1− 1

w(τ) + 1

)
dτ 6 0,

where w(τ) = (x(τ) − x(t))/x(t). Now by using the method reported in [26], (1) is
archived.

Theorem 5. System (3) is persistent for all 0 < α < 1 if the equilibrium point E∗ exists.

Proof. Consider the following positive Lyapunov function:

V (x, y) = λ1 lnx+ λ2 ln y, (x, y) ∈ R2
+, λi > 0, i = 1, 2.

By applying fractional Caputo differential operator along the solution of the model, we
have

dα

dtα
V (x, y) = λ1

dα

dtα
lnx+ λ2

dα

dtα
ln y.

According to Lemma 1 and positivity of the solutions, we get

dα

dtα
V (x, y) >

λ1

x(t)

dα

dtα
x(t) +

λ2

y(t)

dα

dtα
y(t),

then

dα

dtα
V (x, y) > λ1

(
a− bx− βy

µ+ ηx+ γy

)
+ λ2

(
−σ +

ξx

µ+ ηx+ γy

)
.

Following Lemma 4.6 in Huo et al. [15], to show that the system is persistent, we have
to prove that dαV (x, y)/dtα is positive at all the boundary points E0 = (0, 0) and E1 =
(a/b, 0) for appropriate choices of λi. Thus, the following conditions are extracted:

E0: λ1 > λ2
σ

a
, E1: λ2

(
−σ +

ξa

µb+ ηa

)
> 0.
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By choosing the suitable values of λi, the first condition is trivial, and the second condi-
tion is

(ξ − ση)
a

b
> σµ.

But this condition is exactly the same as conditions for feasibility of this equilibrium point
in (4).

By using the results obtained in Theorem 3, i.e. ξ < ση, and persistence, we observe
that all the boundary equilibrium points become unstable, and a unique interior equilib-
rium is revealed. Suppose that x and y are satisfied with x < x and y < y. Then we
present the following theorem.

Theorem 6. If b > βησy/(ξx(µ + ηx + γy)) holds, then the positive equilibrium x of
system (3) is globally asymptotically stable.

Proof. Rewrite (3) in the following form:

dα

dtα
x(t) = x

(
−b(x− x) +

βy

µ+ ηx+ γy
− βy

µ+ ηx+ γy

)
,

dα

dtα
y(t) = y

(
ξx

µ+ ηx+ γy
− ξx

µ+ ηx+ γy

)
.

Due to the study of the global stability of E = (x, y), we consider the Lyapunov function

V (t) = x− x− x ln
x

x
+ L

(
y − y − y ln

y

y

)
,

where

L =
β

ξ

µ+ ηx

µ+ γy
. (10)

The function V (x, y) satisfies

∂V

∂x
= 1− x

x
,

∂V

∂y
= L− Ly

y
.

Hence the fixed point (x, y) is the only extremum of the function V (x, y) in the positive
quadrant. It is easy to see that (x, y) is a minimum. Since

lim
x→0

V (x, y) = lim
y→0

V (x, y) = lim
x→∞

V (x, y) = lim
y→∞

V (x, y) =∞,

the point (x, y) is the global minimum, i.e.,

V (x, y) > V (x, y) = 0 ∀x, y > 0,

thus
V (x, y) > 0 ∀x, y > 0.

Nonlinear Anal. Model. Control, 28(6):1103–1119, 2023
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We compute the fractional derivative of V (x, y) along with the solution of (3) as claimed
by Lemma 3.1 [26]. Therefore,

dα

dtα
V (x, y) 6

(
1− x

x

)
dα

dtα
x(t) + L

(
1− y

y

)
dα

dtα
y(t).

Consequently,

dα

dtα
V (x, y) 6

χ

(µ+ ηx+ γy)(µ+ ηx+ γy)
− b(x− x)2,

where

χ = βη(x− x)(xy − xy)− (βµ− Lξµ)(x− x)(y − y)

+ Lξγ(y − y)(xy − xy).

After that

dα

dtα
V (x, y) 6 −

(
b− βηy

(µ+ ηx+ γy)(µ+ ηx+ γy)

)
(x− x)2

− Lξγx

(µ+ ηx+ γy)(µ+ ηx+ γy)
(y − y)2.

From (10) and by setting Θ = (µ + ηx + γy)(µ + ηx + γy) = (ξx/σ)(µ + ηx + γy),
we get

dα

dtα
V (x, y) 6 −

(
b− βηy

Θ

)
(x− x)2 − Lξγx

Θ
(y − y)2.

Therefore, if b > βηy/Θ, the result is obtained.

4 The impulsive system and its numerical analysis

The idea of impulsive differential equations was first introduced in 1960 by Milman and
Myshkis [21] and then developed in the references [10, 23]. In real life, there are many
phenomena that change state rapidly, which has led to the consideration of impulsive
fractional differential equations (IFrDEs). Consider the following initial-value problem,
which is equipped with the Caputo derivative for 0 < α < 1:

dα

dtα
X(t) = f

(
t,X(t)

)
, t 6= ti, i = 1, 2, 3, . . . ,

X(ti + 0) = ϕi
(
X(ti)

)
, X(t0) = X0,

(11)

where X,X0 ∈ Rn, f : [0,+∞)× Rn → Rn, ϕi = Rn → Rn, t1 < t2 < t3 < · · · .
The second condition in the above equation is expressed as

X(ti + 0)−X(ti)︸ ︷︷ ︸
:=∆(X(ti))

= ϕi
(
X(ti)

)
−X(ti)︸ ︷︷ ︸

:=Ii(X(ti))

.
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There are two views for calculating the solutions of the impulsive differential equation.
Given that in each interval (ti, ti+1) between two consecutive impulses, the solution is
calculated by the fractional differential equation. Besides, unlike the ordinary derivative,
the Caputo fractional derivative depends significantly on the initial conditions, so that can
have a different equation in each interval (ti, ti+1).

The first approach leads to a change in the lower limit in order to calculate the Caputo
derivative in t0 = 0. To calculate the solution in the subsequent subintervals, this lower
limit will be changed and moved to the beginning of the next interval [1, 2]. In this case,
the solutions of IFrDE (11) would be

X(t) =


X0 + 1

Γ(α)

∫ t
0
(t− s)α−1f(s,X(s)) ds, t ∈ [0, t1],

X0 + 1
Γ(α)

∑k
i=1

∫ ti
ti−1

(ti − s)α−1f(s,X(s)) ds

+ 1
Γ(α)

∫ t
tk

(t− s)α−1f(s,X(s)) ds

+
∑k
i=1 Ii(X(ti)), t ∈ (tk, tk+1], k = 1, 2, 3, . . . .

Another approach is to keep the lower limit of t0 in the Caputo derivative for all t >
t0, and only the initial conditions of the equation in each subinterval (ti, ti+1) will be
changed [13, 14, 27–29]. This approach emphasizes that the restriction of the Caputo
fractional derivative does not change in each subinterval, and only the initial conditions
change between two consecutive impulses. In fact, in this approach, the solutions of
IFrDE (11) are as follows:

X(t) =


X0 + 1

Γ(α)

∫ t
0
(t− s)α−1f(s,X(s)) ds, t ∈ [0, t1],

X0 + 1
Γ(α)

∫ t
0
(t− s)α−1f(s,X(s)) ds

+
∑k
i=1 Ii(X(ti)), t ∈ (tk, tk+1], k = 1, 2, 3, . . . .

Minimizing losses caused by insect pests in agriculture is one of the major concerns.
There are many ways to control agricultural insect pests. One of these methods is biolog-
ical control in which the pests are destroyed through the release of their natural enemy.
They use other insects such as parasites as pesticides [24,25]. Another method is chemical
control and the use of insecticides, which have high effectiveness but are harmful to
human health. The combination of the above two cases has the best effect in which insect
pest reduction is applied at the lowest cost both to the grower and the environment. In
this section, to control the population and by introducing periodic impulse, on the one
hand, we were catching (poisoning) the prey population (pest), and on the other hand, we
cause the periodic immigration of the predator population. We reduce the population of
a particular species by catching or chemical poisoning in agriculture (0 6 p < 1), and
we increase the population of the particular species by artificial breeding or the release of
other species (δ > 0) [30]. We consider the following population model:

dα

dtα
x(t) = x

(
a− bx− βy

µ+ ηx+ γy

)
, t 6= nT, n ∈ N,

dα

dtα
y(t) = y

(
−σ +

ξx

µ+ ηx+ γy

)
, t 6= nT, n ∈ N,

x
(
t+
)

= (1− p)x(t), y
(
t+
)

= y(t) + δ, t = nT, n ∈ N,

(12)

Nonlinear Anal. Model. Control, 28(6):1103–1119, 2023
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where x(t+) = limτ→0+ x(t+ τ), y(t+) = limτ→0+ y(t+ τ), 0 6 p < 1, δ > 0, and T
is the period of impulsive.

We put the parameter values as follows:

α = 0.98, µ = η = 1, a = 8, b = 5, β = 1.1, σ = 0.2,

ξ = 1.045, T = 6, p = 0.1, x(0) = 0.2, y(0) = 7.5.

First, we consider the effect of the changes in the parameter δ. We will give bifurcation
diagrams of different values γ = 0.001, 0.005, 0.01, 0.02, 0.03. When α = 1 and γ =
0.001 as you can see in the Fig. 1(a), by increasing the parameter δ from 0.001 to 9,
the system experiences a quasiperiodic oscillating, cycles (T -periodic solution), peri-
odic doubling cascade leading to chaos, periodic halving cascade, nonunique dynamics,
which means coexist of several attractors. Bifurcation diagrams illustrated in Figs. 2–5(a)
show that system experiences process of periodic doubling cascade, cycles, periodic

(a) α = 1 (b) α = 0.98

Figure 1. Bifurcation diagrams of (12) showing the influence of δ with µ = η = 1, γ = 0.001, a = 8, b = 5,
β = 1.1, σ = 0.2, ξ = 1.045, T = 6, p = 0.1 when δ varies from 0.001 to 9.

(a) α = 1 (b) α = 0.98

Figure 2. Bifurcation diagrams of (12) showing the influence of δ with µ = η = 1, γ = 0.005, a = 8, b = 5,
β = 1.1, σ = 0.2, ξ = 1.045, T = 6, p = 0.1 when δ varies from 0.001 to 10.

https://www.journals.vu.lt/nonlinear-analysis
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(a) α = 1 (b) α = 0.98

Figure 3. Bifurcation diagrams of (12) showing the influence of δ with µ = η = 1, γ = 0.01, a = 8, b = 5,
β = 1.1, σ = 0.2, ξ = 1.045, T = 6, p = 0.1 when δ varies from 0.001 to 10.

(a) α = 1 (b) α = 0.98

Figure 4. Bifurcation diagrams of (12) showing the influence of δ with µ = η = 1, γ = 0.02, a = 8, b = 5,
β = 1.1, σ = 0.2, ξ = 1.045, T = 6, p = 0.1 when δ varies from 0.001 to 10.

(a) α = 1 (b) α = 0.98

Figure 5. Bifurcation diagrams of (12) showing the influence of δ with µ = η = 1, γ = 0.03, a = 8, b = 5,
β = 1.1, σ = 0.2, ξ = 1.045, T = 6, p = 0.1 when δ varies from 0.001 to 10.

Nonlinear Anal. Model. Control, 28(6):1103–1119, 2023
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(a) α = 1 (b) α = 0.98

Figure 6. Bifurcation diagrams of (12) showing the influence of γ with µ = η = 1, δ = 6, a = 8, b = 5,
β = 1.1, σ = 0.2, ξ = 1.045, T = 6, p = 0.1 when γ varies from 0.005 to 0.04.

(a) α = 1 (b) α = 0.98

Figure 7. Bifurcation diagrams of (12) showing the influence of ξ with µ = η = 1, γ = 0.001, a = 8, b = 5,
β = 1.1, σ = 0.2, T = 6, p = 0.1, δ = 6 when ξ varies from 0.001 to 5.

halving cascade and cycles, whereas in the fractional case, Figs. 2–5(b) such behavior is
not observed, and only periodic solutions with period 2 are available. In classical model
when γ = 0.01, the system has chaotic behavior, but when γ = 0.02, only the periodic
solution exists. So γ plays an important role in discussing complexity of the classical
system, furthermore, impulsive immigration of the predator makes sense when densities
of the predator are low or the parameter γ is small. However, in the fractional system, the
behavior is more stable, and there is no chaotic behavior.

On the other hand, in order to further investigate the dynamical behaviors of sys-
tem (12), the bifurcation diagrams with respect to the parameters γ, ξ, β and a are also
carried out in Figs. 6–9(a) and Figs. 6–9(b) in classical and fractional cases, respectively.
Phase space for some values of the bifurcation diagrams, comparing with the classical
cases, can be seen in Figs. 10–13.
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(a) α = 1 (b) α = 0.98

Figure 8. Bifurcation diagrams of (12) showing the influence of β with µ = η = 1, γ = 0.001, a = 8, b = 5,
σ = 0.2, ξ = 1.045, T = 6, p = 0.1, δ = 6 when β varies from 0.001 to 2.

(a) α = 1 (b) α = 0.98

Figure 9. Bifurcation diagrams of (12) showing the influence of a with µ = η = 1, γ = 0.001, b = 5,
β = 1.1, σ = 0.2, ξ = 1.045, T = 6, p = 0.1, δ = 6 when a varies from 5.5 to 25.

(a) α = 1 (b) α = 0.98

Figure 10. Phase portrait of (12) under condition µ = η = 1, γ = 0.001, a = 8, b = 5, σ = 0.2, ξ = 1.045,
T = 6, p = 0.1, δ = 6, β = 1.
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(a) δ = 6 (b) δ = 5.5

(c) δ = 5.3 (d) δ = 5.6

Figure 11. Phase portrait of system (12) under condition µ = η = 1, γ = 0.001, a = 8, b = 5, β = 1.1,
σ = 0.2, α = 1, ξ = 1.045, T = 6, p = 0.1.

(a) α = 1 (b) α = 0.98

Figure 12. Phase portrait of system (12) under condition µ = η = 1, γ = 0.001, a = 8, b = 5, β = 1.1,
σ = 0.2, T = 6, p = 0.1, δ = 6, ξ = 1.5.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Bifurcation analysis of impulsive fractional-order Beddington–DeAngelis prey–predator model 1117

(a) δ = 6 (b) δ = 5.5

(c) δ = 5.3 (d) δ = 5.6

Figure 13. Phase portrait of system (12) under condition µ = η = 1, γ = 0.001, a = 8, b = 5, β = 1.1,
σ = 0.2, α = 0.98, ξ = 1.045, T = 6, p = 0.1.

5 Conclusion

We have considered a fractional density-dependent prey–predator model and examined
the stability and persistence of the system by using the Lyapunov method. The results
obtained in this paper are based on the Beddington–DeAnglis function response that leads
us to the Kolmogorov prey–predator model by placing η = 1 and γ = 0, and will be the
ratio-dependent prey–predator model when µ = 0 and η = 1. We extend this model
to a periodic impulsive model for the prey population. This expansion is done through
the periodic catching of the prey population and the periodic releasing of the predator
population. This model has the potential to protect the predator from extinction. However,
under some circumstances, it can also lead to the extinction of the prey. It can be seen that
the fractional order α plays a vital role in the complexity of the system. Our results show
that there is a significant difference between the classical and fractional model, and its
fractional cases. We have more stable system compared with the classical mode.
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