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Abstract. Closed form expressions for a logarithm of general multivector (MV) in basis-free form
in real geometric algebras (GAs) Clp,q are presented for all n = p+q = 3. In contrast to logarithm
of complex numbers (isomorphic to Cl0,1), 3D logarithmic functions, due to appearance of two
double angle arc tangent functions, allow to include two sets of sheets characterized by discrete
coefficients. Formulas for generic and special cases of individual blades and their combinations are
provided.
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1 Introduction

Logarithm properties are well known for real and complex numbers. Except the Hamilton
quaternions which are isomorphic to Cl0,2, the properties of logarithm in other 2D alge-
bras (some partial formulas for 2D GAs are provided in [7,9,13]) and higher-dimensional
Clifford algebras remain uninvestigated as yet. In general, GA logarithm properties are
simplest for anti-Euclidean algebras Cl0,n. As in the complex algebra case, we expect at
least to have a principal logarithm and a part that makes the GA logarithm a multivalued
function.

Recently, in papers [2, 8], which will be the starting point for the present article,
we have performed a detailed investigation of 3D exponential functions in real GAs.
However, the GA logarithm is more difficult to analyze since one must take into account
the multivaluedness and the fact that in 3D algebras (except Cl0,3) the logarithm may
not exist for all MVs. Here we have treated the logarithm as an inverse problem using
for this purpose the Mathematica symbolic package, more precisely, as an inverse GA
function to exponential in separate 3D algebras Cl0,3, Cl3,0, Cl1,2, and Cl2,1. The final
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14 A. Acus, A. Dargys

GA logarithm formulas were checked symbolically as well as numerically. They are in
a complete agreement with more general formulas [3, 4] suitable for computation on any
function of diagonalizable multivector (MV). The exact logarithm formulas also have
been applied to study convergence of series expansion of MV logarithms.

In Section 2 the notation is introduced. Since GA logarithm is connected with a two
argument arc tangent function arctan(x, y), its properties are mentioned briefly in this
section as well. In Section 3 the GA logarithm of the simplest, namely, Cl0,3 algebra is
examined. The general and special cases are presented in a form handy for the program-
ming. Since algebras Cl3,0 and Cl1,2 are isomorphic, in Section 4 the logarithms of both
algebras are investigated simultaneously. In Section 5 the most difficult logarithm of Cl2,1
algebra is presented. In Section 6 the relations of the logarithm to GA inverse trigonomet-
ric and hyperbolic functions are discussed briefly. Finally, in Section 7, we summarize
the obtained results. The analysis and examples of GA inverse trigonometric and hyper-
bolic functions, including two argument arc tangent function and their relations to a GA
multiple square roots [1, 9] and logarithm, can be found in our extended preprint [6].

2 Notation and general properties of GA logarithm

A general MV is expanded in the orthonormal basis in inverse degree lexicographic
ordering: {1, e1, e2, e3, e12, e13, e23, e123 ≡ I}, where ei are basis vectors, eij are the
bivectors, and I is the pseudoscalar. The number of subscripts indicates the grade. In the
orthonormalized basis the geometric products of basis vectors satisfy the anticommutation
relation, eiej + ejei = ±2δij . For Cl3,0 and Cl0,3 algebras, the squares of all basis
vectors, correspondingly, are e2i = +1 and e2i = −1, where i = 1, 2, 3. For mixed
signature algebras such as Cl2,1 and Cl1,2, the squares are e21 = e22 = 1, e23 = −1 and
e21 = 1, e22 = e23 = −1, respectively.

A general MV in real Clifford algebras Clp,q when n = p+ q = 3 is

A = a0 + a1e1 + a2e2 + a3e3 + a12e12 + a23e23 + a13e13 + a123I

≡ a0 + a+A+ a123I = a0 + A1,2 + a123I = A0,1,2,3,

where ai, aij and a123 are real coefficients, and a = a1e1 + a2e2 + a3e3 and A =
a12e12+a23e23+a13e13 is, respectively, the vector and the bivector. I is the pseudoscalar,
I = e123. A comma-separated multiple index in MV Ai,j,... indicates a sum of MVs of
the grades i, j, . . . , i.e., Ai,j,... = 〈A〉i + 〈A〉j + 〈A〉....

The main involutions, namely, the reversion, the grade inversion and Clifford conju-
gation are denoted, respectively, by tilde, circumflex and their combination:

Ã = a0 + a−A− a123I, ÛA = a0 − a+A− a123I,Û̃A = a0 − a−A+ a123I.

2.1 General properties of GA logarithm. Determinant norm

The logarithm of MV is another MV that belongs to the same geometric algebra. The
defining equation is log(eA) = A, where A ∈ Clp,q . The GA logarithm is a multivalued
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Logarithm of multivector in real 3D Clifford algebras 15

function with the properties:

log(AB) = logA+ logB if AB = BA,

elogA = A, e− logA = A−1,fllogA = log Ã, l̆ogA = log ÛA, fl̆
logA = log Û̃A,

V(logA)V−1 = log
(
VAV−1

)
.

The last expression shows that the transformation V, for example, the rotor, can be pushed
inside the logarithm.

GA logarithm is a multivalued function with period 2π. To account for quadrant
sign in GA (in complex plane) properly, we shall need the double argument arc tangent
function arctan(x, y), x, y ∈ R, as given in the Mathematica, the properties of which
are briefly mentioned below. The double argument arc tangent principal values lie in
interval θ = [−π, π). Thus, one can write arctan(x, y) = arctan(cos θ, sin θ), where
x and y are orthogonal axes, and θ is an angle between x-axis and vector attached
to the coordinate center. If the vector is rotated from x-axis anticlockwise, then θ =
(0, . . . , π]. So a jump in the double arc tangent value and associated branching occurs
on the negative side of x-axis rather than on y-axis as is in the standard single argument
case. When x, y are replaced by real numbers, Mathematica automatically switches to
a single argument arc tangent in the first quadrant (and respective principal value). For
example, arctan(17, 10) = arctan(10/17), arctan(−17, 10) = π − arctan(10/17),
arctan(17,−10) = − arctan(10/17), arctan(−17,−10) = −π + arctan(10/17).

As we shall see, in special cases the logarithm is controlled by determinant norm
of MV B. It is defined as an absolute value of MV determinant [14] DetB raised to
fractional power 1/k, where k = 2dn/2e, i.e., (DetB)1/k ≡ |B| > 0. For algebras having
negative determinant, instead a seminorm is introduced |B| = (abs(DetB))1/k > 0,
where the equality sign means that in case of seminorm the determinant may be zero
although B 6= 0. In the following the same symbol will be used for both the norm and
seminorm. The (semi)norm power k can be interpreted as a number of multipliers needed
to define DetB. In 3D algebras (n = 3), we have k = 2d3/2e = 22 = 4. The integer
k coincides with the number of multipliers in the 3D determinant: DetB = BB̃ÛBÛ̃B. The
determinant norm for MV B in 3D algebras, therefore, is |B| = 4

√
abs(DetB). It can

be shown that for arbitrary GA, which holds a basis element with property e2i = −1,
by adding a scalar one can construct a MV the norm of which may be identified with
a module of a complex number. For example, in Cl3,0 the norm of B = 1 + e12 is√

(1 + e12)(1− e12) =
√
2, which coincides with |B| = 4

√
abs(DetB) =

√
2.

3 MV logarithms in Cl0,3Cl0,3Cl0,3

3.1 Logarithm formula for generic MV

The term “generic” here will be understood as a typical case where MV coefficients are
not causing the problems [10]. If for a given set of MV coefficients, the generic formula
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is not applicable, for example, due to zero denominator or appearance of an undefined
subexpression like arctan(0, 0), we will refer to as “a special or specific case”. Special
cases will be covered by more elaborate formulas later.

Theorem 1 [Logarithm of multivector in Cl0,3Cl0,3Cl0,3]. The generic logarithm of MV A =
a0 + a+A+ a123I is the MV given by

logA =
1

2

(
A0+ + A0− + A1,2+ + A1,2− + (A0+ − A0−)I

)
(1)

with

A0+ =
1

2
log
(
(a0 + a123)

2 + a2+
)
, a+ 6= 0, (2)

A0− =
1

2
log
(
(a0 − a123)2 + a2−

)
, a− 6= 0, (3)

A1,2+ =
1

a+

(
arctan(a0 + a123, a+) + 2πc1+

)
(1 + I)(a+A), a+ 6= 0, (4)

A1,2− =
1

a−

(
arctan(a0 − a123, a−) + 2πc1−

)
(1− I)(a+A), a− 6= 0. (5)

The MVs A0± , A1,2± and A0±I denote, respectively, the scalar, vector± bivector and the
pseudoscalar components. c1± , c2± ∈ Z are arbitrary integers. The scalars a+ > 0 and
a− > 0 are given by the following expressions [2, 8]:

a− =
»
−(a · a+A · A) + 2Ia ∧ A

=
»
(a3 + a12)2 + (a2 − a13)2 + (a1 + a23)2, (6)

a+ =
»
−(a · a+A · A)− 2Ia ∧ A

=
»
(a3 − a12)2 + (a2 + a13)2 + (a1 − a23)2. (7)

Proof. It is enough to check that after substitution of (1) into generic GA exponential
formula (1) in [8], one gets the initial MV A.

Theorem 1 presents the GA logarithm in a basis-free form. However, the derivation
of the generic logarithm formula at first was performed in a coordinate form [6], from
which, after collection and simplification of coefficients at different grades, Theorem 1
comes next (for more details, see the preprint [6]).

Theorem 1 ensures the existence of GA logarithm for MVs with real and nonzero coef-
ficients in Cl0,3 because in the mentioned algebra the zero determinant of MV (DetA=0)
occurs only if A = 0. As we shall see, this property does not hold for remaining algebras.

3.2 Special cases

In Theorem 1, it is presumed that the both scalars a− and a+ do not vanish. This assump-
tion is equivalent to the condition that a sum of vector and bivector must have nonzero
determinant, Det(a + A) = a2+a

2
− 6= 0. If either of the scalars is zero, then we have
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a special case. This situation is rare, for instance1, when a1 = a23, a2 = −a13, a3 = a12.
In such and similar cases the MVs A0± , A1,2± in Theorem 1 must be supplemented by
additional conditions:

A0+ =


log(a0 + a123) + 2πc2+ Û , (a+ = 0) ∧ (a0 + a123 > 0),

log(0+), (a+ = 0) ∧ (a0 + a123 = 0),

log(−(a0 + a123) + (π + 2πc2+)û, (a+ = 0) ∧ (a0 + a123 < 0),

(8)

A0− =


log(a0 − a123) + 2πc2− Û , (a− = 0) ∧ (a0 − a123 > 0),

log(0+), (a− = 0) ∧ (a0 − a123 = 0),

log(−(a0 − a123)) + (π + 2πc2−)û, (a− = 0) ∧ (a0 − a123 < 0),

(9)

A1,2+ =


( 1
a0+a123

+ 2πc1+)(1 + I)(a+A), (a+ = 0) ∧ (a0 + a123 > 0),

0, (a+ = 0) ∧ (a0 + a123 = 0),

(π + 2πc1+)(1 + I)(a+A), (a+ = 0) ∧ (a0 + a123 < 0),

(10)

A1,2− =


( 1
a0−a123 + 2πc1−)(1− I)(a+A), (a− = 0) ∧ (a0 − a123 > 0),

0, (a− = 0) ∧ (a0 − a123 = 0),

(π + 2πc1−)(1− I)(a+A), (a− = 0) ∧ (a0 − a123 < 0).

(11)

Here c1± , c2± ∈ Z are the arbitrary integers. The conditions for (a0 ± a123) on the
right-hand side take into account the case Det(a+A) = 0. In scalars2 A0+ and A0− , the
symbols û and Û represent any free unit vector or bivector, respectively, û2 = Û2 =−1,
for example, û = (u1e1 + u2e2 + u3e3)/

√
u21 + u22 + u32. It should be noted that the

term 1/(a0 ± a123) in Eqs. (10) and (11) represents the limit lima±→0 arctan(a0 ±
a123, a±)/a± = 1/(a0 ± a123), which is valid only when a0 ± a123 > 0. The notation
of log(0+) in formulas for A0± is explained in Example 4.

Interpretation of special conditions (8)–(11) in terms of the MV determinant [11, 14]
becomes more evident if one remembers that the determinant of MV A in Cl0,3 can be
expressed in a form DetA = (a2− + (a0 − a123)

2)(a2+ + (a0 + a123)
2), whereas the

condition a± = 0 is equivalent to DetA1,2 = Det(a + A) = a2+a
2
−. All special cases

therefore occur if Det(a+A) = 0 and the conditions are expressed by a0± a123 S 0. In
conclusion, the expression for logarithm has three special pieces (branches) a0±a123 S 0,
provided that the condition a± = 0 is satisfied. The generic piece is characterized by
a± 6= 0.

3.3 Multivaluedness and free multivector

To include a multivaluedness of GA logarithm, we introduce a free multivector F by
defining equation [9]

elogA+F = elogAeF = elogA,

1Minus sign in a2 = −a13 comes from a strict ordering of indices of basis elements [8].
2The incorporation of free vector/bivector breaks the convention of grade arrangement in generic terms (2)

and (3). This choice, however, results in a more simple final expression.
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18 A. Acus, A. Dargys

which implies two conditions that the MV F must satisfy: the commutator [logA,F] = 0
and eF = 1. As we shall see, for remaining n = 3 algebras, the free MV F will play a
similar role. One can check that the expression

F =
πc1+
a+

(1 + I)(a+A) +
πc1−
a−

(1− I)(a+A) (12)

satisfies eF = 1, and that for a generic MV A, Eq. (1), the free term (12) commutes with
logA, i.e., [logA,F] = 0. The constants c1+ , c1− ∈ Z in Eq. (12) add two free (discrete)
parameters that may be used to shift the coefficients of vector and bivector in logA by
some multiple of π. The sum (a + A) in (12) constitute a vector+ bivector part3 of
the original MV A, therefore (a + A) automatically commutes with A. As a result, only
discrete free coefficients are possible in the logarithm generic formula. In special cases
the free MV F may also contain arbitrary unit vector û and/or unit bivector Û . In such
cases, one can include two additional continuous parameters interpreted as directions of
û or Û .

Since arctan(x, y) has been defined in the range (−π, π], we can add any multiple of
2π to it. Therefore, the plus/minus instances of arctan(a0 ± a123, a±) were replaced by
more general expressions arctan(a0 + a123, a+) + 2πc1+ and arctan(a0 − a123, a−) +
2πc1− in Eqs. (4) and (5), respectively, which take into account the multivaluedness of
the argument. This explains the rationale behind the construction of the free MVs for GA
logarithm.

In [12] the notion of principal logarithm (also called the principal value of logarithm)
in case of matrices was introduced. In [7], it was proposed that the “logarithm principal
value in GA can be defined as the MV M = logY with the smallest norm”. Formulas (2)–
(5) and (8)–(11) might suggest that we could obtain the principal logarithm after equating
discrete free constants c1± , c2± to zero. Unfortunately, our extensive numerical checks
revealed that in rare cases the suggestion is violated.

Example 1 [Logarithm of generic MV in Cl0,3]. Let us compute the logarithm of A =
−8 − 6e2 − 9e3 + 5e12 − 5e13 + 6e23 − 4e123. Then a2− = 53 and a2+ = 353.
Equations (2)–(5) give A0+ = log(497)/2, A0− = log(69)/2, A1,2+ = (353)−1/2 ×
(π − arctan(

√
353/12) + 2πc1+)(1 + I)(−6e2 − 9e3 + 5e12 − 5e13 + 6e23) and

A1,2− = (53)−1/2(π−arctan(
√
53/4)+2πc1−)(1−I)(−6e2−9e3+5e12−5e13+6e23),

where the free term F, Eq. (12), has been included via c1± . The logarithm is the sum of
all above listed MVs: logA = (A0+ +A0− +A1,2+ +A1,2− + (A0+ −A0−)I)/2. Using
the exponential [8], one can check that the logarithm logA indeed yields the initial MV A
for arbitrary integer constants c1± .

Example 2 [Logarithm of MV when a+ = 0 and a0 + a123 > 0]. The MV that satisfies
these conditions is A = 1+ (3e1 − 2e2 + e3) + (e12 +2e13 +3e23) + 7e123 = 1+ a+
A+ 7e123. Equation (6) gives a− =

√
56 = 2

√
14 and a0 − a123 = −6. Equations (8),

(10) give A0+ = log 8+2πc2+ Û , A1,2+ = (1/8+2πc1+)(1+ I)(a+e3+A) = 0. Then

3In 3D algebras the scalar and pseudoscalar belong to algebra center, i.e., they commute with all MV
elements.
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from (3) and (5) we have A0− = log(92)/2 and A1,2− = (π−arctan(
√
14/3)+2πc1−)×

(1− I)(a+A)/(2
√
14). Finally, from Eq. (1) logA = (7(log 5888− log(23/16)e123)+√

14((2c1− +1)π− arctan(
√
14/3)(a+A))/28+ (1+ I)πc2+ Û . After exponentiation

of A, the constants c1− and c2+ and bivector Û simplify out.

Example 3 [Logarithm of MV when a− = 0 and a0 − a123 < 0]. These conditions are
satisfied by A = 1 + (−3e1 + 2e2 − e3) + (e12 + 2e13 + 3e23) + 7e123 = 1 + a +
A + 7e123. We have a2+ = 56, a0 + a123 = 9 and a0 − a123 = −6. Then Eq. (9)
gives A0− = log 6 + (π + 2πc2−)û. Equations (2) and (4) give A0+ = log(120)/2,
A1,2+ = (arctan(

√
7/2/2)+2πc1+)(1+I)(a+A)/(2

√
14); and Eq. (11) gives A1,2− =

(π+2πc1−)(1−I)(a+A) = 0. Finally, logA = (A0++A0−+A1,2++(A0+−A0−)I)/2.

Example 4 [Logarithm with infinite subparts: the case a+ = 0 and a0 + a123 = 0].
This example exhibits unusual and the most interesting instance. In Cl0,3, let us compute
GA logarithm of A = 1 + (−2e1 − 3e2 + 5e3) + (5e12 + 3e13 − 2e23) − e123 =
1+ a+A− e123. The remaining scalars are a− = 2

√
38, (a0− a123) = 2. Then Eq. (8)

gives A0+ = log(0+); Eq. (3) gives A0− = log(156)/2; Eq. (10) gives A1,2+ = 0; Eq. (5)
gives A1,2− = (arctan(

√
38) + 2πc1−(a+A)/

√
38. Finally, the logarithm of A is

logA =
arctan(

√
38) + 2πc1−

2
√
38

(a+A)

+
1

2

Å
log(0+)(1 + e123) +

1

2
log(156)(1− e123)

ã
.

Note the factor log(0+) in front of (1 + e123). If logarithm in this form is inserted into
coordinate-free exponential [2], we will getÅ

1

2
elog(0+) + 1

ã
+ a+A+

Å
1

2
elog(0+) − 1

ã
e123,

which coincides with the initial MV if we assume that4 log(0+) = −∞.

3.4 GA logarithm of blades and their combinations in Cl0,3Cl0,3Cl0,3

In this subsection the logarithms for individual blades and their combinations that follow
from generic logarithm (Theorem 1) and may be useful in practice are collected. The
norms listed below are positive scalars.

Vector norm: |a| =
√
aÛa =

√
a21 + a22 + a23.

Paravector norm: |a0 + a| = |A0,1| = (A0,1
ÛA0,1)

1/2 =
√
a20 + a21 + a22 + a23.

Bivector norm: |A| = (A‹A)1/2 =
√
a212 + a213 + a223.

Rotor norm: |a0 +A| = |A0,2| = (A0,2Ã0,2)
1/2 =

√
a20 + a212 + a213 + a223.

4The statement can be made strict by considering the limit limx→0+ exp(log x) = 0, where x → 0+
indicates that the limit is taken for x > 0.
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Logarithms of blades and their combinations.
Logarithm of vector a = a1e1 + a2e2 + a3e3, ci ∈ Z,

log a =
1

2
log
(
|a|2
)
+ π

a

|a|

Å
1

2
+ c1(1 + I) + c2(1− I)

ã
, |a| 6= 0.

Logarithm of paravector A0,1 = a0 + a, ci ∈ Z,

logA0,1 =
1

2
log
(
|A0,1|2

)
+

a

|a|
(
arctan(a0, |a|) + π

(
c1(1 + I) + c2(1− I)

))
, |a| 6= 0.

Logarithm of bivector A = a12e12 + a13e13 + a23e23, ci ∈ Z,

logA =
1

2
log
(
|A|2

)
+ π

A
|A|

Å
1

2
+ c1(1 + I) + c2(1− I)

ã
, |A| 6= 0.

Logarithm of parabivector and rotor A0,2 = a0 +A with a0 6= 0,

logA0,2 =
1

2
log
(
|A0,2|2

)
+
A
|A|
(
arctan(a0, |A|) + π(c1(1 + I) + c2(1− I))

)
, |A| 6= 0.

Logarithm of center A0,3 = a0 + a123I ,

logA0,3 =



( 12 log(a0 − a123) + πc1Û1)(1− I)
+( 12 log(a0 + a123) + πc2Û2)(1 + I),

(a0 − a123 > 0) ∧ (a0 + a123 > 0);

( 12 log(a0 − a123) + πc1Û1)(1− I)
+( 12 log(−a0 − a123) + π(c2 +

1
2 )û2)(1 + I),

(a0 − a123 > 0) ∧ (a0 + a123 < 0);

( 12 log(−a0 + a123) + π(c1 +
1
2 )û1)(1− I)

+( 12 log(a0 + a123) + πc2Û2)(1 + I),

(a0 − a123 < 0) ∧ (a0 + a123 > 0);

( 12 log(−a0 + a123) + π(c1 +
1
2 )û1)(1− I)

+( 12 log(−a0 − a123) + π(c2 +
1
2 )û2)(1 + I),

(a0 − a123 < 0) ∧ (a0 + a123 < 0),

where ûi and Ûj are arbitrary noncommuting unit vector û2 = −1 and bivector Û2 = −1
respectively. If (a0 − a123) = 0 or (a0 + a123) = 0, some of subparts give log(0+).
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4 MV logarithms in Cl3,0Cl3,0Cl3,0 and Cl1,2Cl1,2Cl1,2

Cl3,0 and Cl1,2 algebras are isomorphic. Their multiplication tables coincide, for exam-
ple, if basis elements are swapped by pairs:

Cl3,0 {1, e1, e2, e3, e12, e13, e23, e123} ↓
Cl1,2 {1,−e1,−e12,−e13,−e2, −e3, e23,−e123}.

To find formulas for logarithm in coordinate and coordinate-free forms, the same inverse
solution method was used as for Cl0,3 algebra [6]. The logarithm in Cl3,0 and Cl1,2 exists
for all MVs except for nonzero MVs of the form A1,2 = a+A that satisfy the condition
DetA1,2 = (a2+ + a2−)

2 = 0, i.e., for MVs that are the sums of vector and bivector and
the determinant is equal to zero. These restrictions are the same as those for GA square
root to exist (see [1] and Example 3 therein in case s = S = 0).

4.1 Logarithm formula for generic MV

Theorem 2 [Logarithm of multivector in Cl3,0Cl3,0Cl3,0 and Cl1,2Cl1,2Cl1,2]. The logarithm of generic
MV A = a0 + a+A+ a123I is another MV

logA = A0 + A1,2log + A1,2arctan + AI , (13)

where

A0 =
1

2
(log k+ + log k−) (14)

when a2+ + a2− 6= 0,

A1,2log =
1

2

a+ − a−I
a2− + a2+

(log k+ − log k−)(a+A) (15)

when a2+ + a2− 6= 0,

A1,2arctan = I
a+ − a−I
a2− + a2+

(a+A)

×
Å
1

2
arctan

(
−
(
a2+ − a20

)
−
(
a2− − a2123

)
,

(a+ − a0)(a− + a123)− (a+ + a0)(a− − a123)
)
+ 2πc1

ã
(16)

when a2+ + a2− 6= 0 and k−k+ 6= 0,

AI = I arctan
(
(a++ a0)k− − (a+− a0)k+,
(a−+ a123)k− − (a−− a123)k+

)
+ 2πc2I (17)
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when a2+ + a2− 6= 0 and either (a+ + a0)k− − (a+ − a0)k+ 6= 0 or (a− + a123)k− −
(a− − a123)k+ 6= 0, where scalar coefficients are

k2− = (a+ − a0)2 + (a− − a123)2, k2+ = (a+ + a0)
2 + (a− + a123)

2, (18)

and

a− =
−2Ia ∧ A

√
2
»
a · a+A · A+

√
(a · a+A · A)2 − 4(a ∧ A)2

,

a+ =

»
a · a+A · A+

√
(a · a+A · A)2 − 4(a ∧ A)2
√
2

(19)

for a ∧ A 6= 0 and

a+ =
√
a · a+A · A, a− = 0 if a · a+A · A > 0,

a+ = 0, a− =
»
−(a · a+A · A) if a · a+A · A < 0

when a ∧ A = 0. The constants c1, c2 are arbitrary integers.

Proof. It is enough to check that after substitution of logA expressions into exponential
formula presented in [8], one gets the initial MV A. The factor (a+ − a−I)/(a2− + a2+)
in the above formulas alternatively may be written as (a+ + a−I)

−1.

4.2 Special cases

When the conditions listed in Eqs. (14)–(17) are not satisfied, we have special cases.
In particular, the condition k± = 0 means that the MV determinant is zero, DetA =
k2−k

2
+ = 0. Similarly, the condition a2+ + a2− = 0 implies that determinant of vector +

bivector part vanishes, DetA1,2 = (a2++a2−)
2 = 0. The specific relations (a++a0)k−−

(a+ − a0)k+ 6= 0 and (a− + a123)k− − (a− − a123)k+ 6= 0 in Eq. (17), as well as the
relation k−k+ 6= 0 in Eq. (16), ensure that both arguments of arctan(x, y) do not nullify
simultaneously.

When the generic formula is not applicable, the expressions for A0, A1,2log , A1,2arctan
and AI in Theorem 2 must be supplemented by the following formulas:

A0 =

{
1
2 log

(
a20 + a2123

)
, (a2++ a2− = 0) ∧ (a20 + a2123 6= 0),

∅, (a2++ a2−= 0) ∧ (a20 + a2123 = 0),
(20)

A1,2log =

{
0, (a2++ a2−= 0) ∧ (a20 + a2123 6= 0),

∅, (a2++ a2−= 0) ∧ (a20 + a2123 = 0),
(21)

A1,2arctan =


π( 12 + 2c1)I

a+−a−I
a2−+a

2
+
(a+A), (a2++ a2− 6= 0) ∧ (k−k+ = 0),

a0−a123I
a20+a

2
123

(a+A) + F̂ , (a2++ a2−= 0) ∧ (a20 + a2123 6= 0),

∅, (a2++ a2−= 0) ∧ (a20 + a2123 = 0),

(22)
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AI =



I(arctan(−a−, a+) + 2πc2), (a2++ a2− 6= 0)

∧((a++ a0)k−− (a+− a0)k+= 0)

∧((a−+ a123)k−− (a−− a123)k+= 0),

I(arctan(a0, a123) + 2πc2), (a2++ a2−= 0) ∧ (a20 + a2123 6= 0),

∅, (a2++ a2−= 0) ∧ (a20 + a2123 = 0).

(23)

Here the symbol ∧ in the conditions represents logical conjunction. The free unit MV Û
in

F̂ =

®
2πc1Û if a+A = 0,

0 if a+A 6= 0

must satisfy Û2 = −1. After exponentiation, it gives exp Û = 1 and represents a contin-
uous degree of freedom (direction) in (22), and it can be parameterized as

Û =


d12e12+d13e13+d23e23√

d212+d
2
13+d

2
23

for Cl3,0,

d12e12+d13e13+d23e23√
−d212−d213+d223

for Cl1,2 when − d212 − d213 + d223 > 0.

The case k± = 0 that represent MV with a vanishing determinant, DetA = k2−k
2
+ = 0,

yields MVs with infinite coefficients (see Example 7 for details).

4.3 Multiveluedness and free multivector

In Eqs. (16) and (17), we may add any multiple of 2π to both arc tangent functions,
i.e., arctan(y1, y2) → arctan(y1, y2) + 2πci. After collecting terms in front of free
coefficients c1, c2 ∈ Z, we obtain a free MV F that satisfies expF = 1, and where
a+ and a− are given by Eq. (19),

F =
2πc1

(a2− + a2+)

(
a−(a+A) + a+(a+A)I

)
+ 2πc2I. (24)

Example 5 [Logarithm of generic MV in Cl3,0]. Let us take simple but representative MV:
A = −2+e1+e23−3e123. From Eqs. (18) and (19) we have k2+ = 5, k2− = 25 and a+=
a−= 1. Then (14) and (15) yield A0 = 3 log(5)/4 and A1,2log = − log(5)(e1 + e23) ×
(1−I)/8. Next, Eqs. (16) and (17) give A1,2arctan=−(− arctan(2/11)+4πc2)(e1+e23)×
(1+I)/4 and AI = (−π+arctan((−10−4

√
5)/(−5−3

√
5))+2πc1)e123. Finally, after

summation of all terms in (13), we obtain logA=log(5)(3−e1)/4+arctan(2/11)e23/2+
(−π+arctan((1+

√
5)/2)e123+F, where the free MV is F = 2π(c1e123− c2e23). The

coefficients c1, c2 ∈ Z come from A1,2arctan and AI terms, respectively. Substitution of
this result into exponential exp(logA) returns the initial MV.

Example 6 [Logarithm of center of Cl3,0]. A = 1− 2e123. Since e2123 = −1, the MV is
a counterpart of complex number logarithm. Equations (18) and (19) give a+ = a− = 0
and k2+ = k2− = 5. Then Eq. (20) gives A0 = log(5)/2; Eq. (21) gives A1,2log = 0;
Eq. (22) gives A1,2arctan = 2πc1Û ; Eq. (23) gives AI = (− arctan 2 + 2πc2)e123. After
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summation of terms in (13), the final answer is logA = log(5)/2 + (− arctan 2 +
2πc2)e123 + 2πc1Û . On the other hand, the complex number 1− 2i gives log(1− 2i) =
log(5)/2− arctan 2, which coincides with Cl3,0 algebra result if c1 = c2 = 0.

Example 7 [Logarithm of singular MV when DetA = 0]. This is the most intriguing
and complicated case in Euclidean algebra Cl3,0. Since Det(A) = k2−k

2
+, we may have

either k2− = 0 or k2+ = 0. The case when k2− = k2+ = 0 is trivial since it requires
all MV components to vanish. Let us analyze the case when k2+ 6= 0 and k2− = 0. It
is represented, for example, by A = 6 + (−8e1 − 2e3) + (−e12 + 10e13 + 10e23) −
13e123 = 6+a+A− 13e123. From Eq. (19) we find a+ = 6, a− = −13, and from (18)
k2+ = 820, k2− = 0. Then Eq. (14) gives A0 = (log(2

√
205)+log(0+))/2; Eq. (15) gives

A1,2log = (log(2
√
205)− log(0+))(6 + 13e123)(a+A)/410; Eq. (22) gives A1,2arctan =

π(1/2+2c1)(−6+13e123)(a+A)/205; Eq. (23) gives AI = (arctan(6/13)+2πc2)e123.
Summing up all terms, we obtain the answer:

logA =
1

2

(
log(2

√
205) + log(0+)

)
+

Å
1

410

(
log(2

√
205)− log(0+)

)
(6 + 13e123)

+
π

205

Å
1

2
+ 2c1

ã
(−6 + 13e123)

ã
(a+A) +

Å
arctan

6

13
+ 2πc2

ã
e123.

The result can be checked after replacement of log(0+) by log x and substitution into
exponential formula (4.1) of the paper [8]. After simplification, one can take the limit
limx→0+ exp(logA), which returns the initial MV. This example demonstrates that the
logarithm of MV with specific finite coefficients may yield MV with some of coefficients
in the answer being infinite and which have to be understood as the limit limx→0+ log x.
The answer, nevertheless, is meaningful since the substitution of the answer back into
exponential formula and computation of the limit reproduces the initial MV.

4.4 Logarithms of individual blades and their combinations

Below we use different norms for individual blades of Cl3,0 since a positive scalar for
vectors and bivectors is calculated differently. For a vector, we will use

|a| =
√
aa =

»
a21 + a22 + a23;

for a bivector,

|A| = (A‹A)1/2 =
»
a212 + a213 + a223;

for a rotor,

|a0 +A| = |A0,2| = (A0,2Ã0,2)
1/2 =

»
a20 + a212 + a213 + a223;

and for an element of center,

|a0 + a123I| = |A0,3| = (A0,3
ÛA0,3)

1/2 =
»
a20 + a2123.

Logarithm of vector: a = a1e1 + a2e2 + a3e3,

log a =
1

2
log
(
|a|2
)
− π
Å
1

2
+ 2c2

ã
a

|a|
I + π

Å
1

2
+ 2c1

ã
I, |a| 6= 0.
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Logarithm of bivector: A = a12e12 + a13e13 + a23e23,

logA =
1

2
log
(
|A|2

)
− π
Å
1

2
+ 2c2

ã A
|A|

+ π(1 + 2c1)I, |A| 6= 0. (25)

Logarithm of rotor: A0,2 = a0 +A,

logA0,2 =



1
2 log(|A0,2|2) + (arctan

(
a0, 0

)
+ 2πc1)I

+ A
|A| (2πc2 −

1
2 arctan(a

2
0 − |A|2,−2a0|A|)), |A0,2| 6= 0,

log a0 + 2πc1I, (|A| = 0) ∧ (a0 > 0),

log(−a0) + 2π(c1 + 1)I, (|A| = 0) ∧ (a0 < 0),

see bivector formula (25), (|A| 6= 0) ∧ (a0 = 0).

Logarithm of center: A0,3 = a0 + a123e123 = a0 + a123I ,

logA0,3 =

®
1
2 log(|A0,3|2) + 2πc2Û + (arctan(a0, a123) + 4πc1)I, |A0,3| 6= 0,

log(0+) + 2πc2Û , |A0,3| = 0.

The paravector A0,1 = a0+a norm |a0+a|2 ≡ |A0,1|2 = A0,1
ÛA0,1 = a20−a21−a22−a23

contains coefficients with opposite signs. The logarithm formula, therefore, splits into
many subcases and is impractical.

5 MV logarithms in Cl2,1Cl2,1Cl2,1

In Cl0,3 algebra the logarithm exists for all MVs. The logarithm in Cl3,0 and Cl1,2 alge-
bras exist for almost all MVs except very small specific class a+A 6= 0 having a vanishing
determinant, Det(a + A) = 0. In Cl2,1 algebra the logarithm does not exist for a large
class of MVs. Of all three algebras, the logarithm of Cl2,1 appeared technically the most
hard to recover.

Theorem 3 [Logarithm of multivector in Cl2,1Cl2,1Cl2,1]. The logarithm of MV

A = a0 + (a1e1 + a2e2 + a3e3) + (a12e12 + a13e13 + a23e23) + a123I

= a0 + a+A+ a123I

is

logA =

{
1
2 (A0+ + A0− + A1,2+ + A1,2− + (A0+− A0−)I), f± > 0,

∅, f± < 0,
(26)

where

f± = (a0 ± a123)2 + a2±, f± S 0,

a
(2)
− = −(a · a+A · A) + 2Ia ∧ A, a

(2)
− S 0,

a
(2)
+ = −(a · a+A · A)− 2Ia ∧ A, a

(2)
+ S 0,

(27)
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A0±=



1
2 log(f±), (a(2)± > 0),

1
2 log(a0 ± a123 +

√
−a(2)± )

+ 1
2 log(a0 ± a123 −

√
−a(2)± ), (a(2)± < 0) ∧ (a0 ± a123 > 0),

log(a0 ± a123) + 2πc2±F̂ , (a(2)± = 0) ∧ (a0 ± a123 > 0),

log(−(a0 ± a123)) + (π + 2πc2±)Û , (a(2)± = 0) ∧ (a0 ± a123 6 0)

∧(D = True),

∅, ((a(2)± < 0) ∧ (a0 ± a123 < 0))

∨((a(2)± = 0) ∧ (a0 ± a123 6 0)

∧(D = False)),

(28)

A1,2±=



1√
a(2)±

(arctan(a0 ± a123, a±)

+2πc1±)(1± I)(a+A), (a(2)± > 0),

1√
−a(2)±

artanh(

√
−a(2)±

a0±a123 )(1± I) (a(2)± < 0) ∧ (a0 ± a123 > 0)

×(a+A), ∧(−a(2)± 6= (a0 ± a123)),
1
2 (log(a0 ± a123 +

√
−a(2)± )

− log(a0 ± a123 −
»
−a(2)± )) (a

(2)
± < 0) ∧ (a0 ± a123 > 0)

× 1√
−a(2)±

(1± I)(a+A), ∧(−a(2)± = (a0 ± a123)),
1

a0±a123 (1± I)(a+A), (a
(2)
± = 0) ∧ (a0 ± a123 > 0),

0, (a
(2)
± = 0) ∧ (a0 ± a123 6 0)

∧(D = True),

∅, ((a
(2)
± < 0) ∧ (a0 ± a123 < 0))

∨((a(2)± = 0) ∧ (a0 ± a123 6 0)

∧(D = False)),

(29)

where the upper symbol in a(2)± indicates that a(2)± consists of the squared coefficients a2i ,
a2ij and aiaij ,

F̂ =

®
Û if D = True,

0 if D = False.

The logical condition D is a conjunction of outcomes of three comparisons

D = (a1 = ±a23) ∧ (a2 = ∓a13) ∧ (a3 = ∓a12)
≡
(
(a1 = a23) ∧ (a2 = −a13) ∧ (a3 = −a12)

)
∨
(
(a1 = −a23) ∧ (a2 = a13) ∧ (a3 = a12)

)
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that should be applied to A0± and A1,2± terms without paying attention to ± signs in
their subscripts. ∨ denotes logical disjunction operation. Unit bivector in A0± may be
parameterized as Û = (d12e12 + d13e13 + d23e23)/

√
d212 − d213 − d223 for d212 − d213 −

d223 > 0. The symbol ∅ means that the solution set is empty. In all formulas the indices
and conditions (except D as stated explicitly) must be included with either all upper or
with all lower signs.

When f± 6= 0 and a(2)± > 0, we have a generic case. When either f± = 0 or a(2)± 6 0,
we have special cases. Note that in Eq. (27) the condition f± = 0 implies a(2)± 6 0. Also,
observe that the condition f± > 0 ensures that a less restrictive requirement DetA =
f−f+ > 0 is fulfilled automatically.

Equations (28)–(29) are similar to Eqs. (8)–(11) for Cl0,3 (see Section 3.2). Also,
in (27) the expressions for scalar coefficients

a± =

{√
a(2)± , a

(2)
± > 0,√

−a(2)± , a
(2)
± < 0

are similar to Eqs. (6) and (7). The differences mainly arise at the parameter boundaries
that define the existence of MV logarithm for Cl2,1.

From our earlier calculations [1] we know the algebraic conditions that ensure an
existence of MV square roots in Cl2,1 algebra. Thus, we can rewrite and use here these
conditions, which at the same time limit the extent of the logarithm in Theorem 3. It
appears that quantities bS and bI introduced in [1] may be expressed in terms of multi-
pliers f+ and f− in the determinant D = DetA = f−f+ as bI = (f+ − f−)/2 and
bS = (f+ + f−)/2, where f± = (a0 ± a123)

2 + a
(2)
± . Now, note that f± enter as

arguments in log-functions of Theorem 3, Eq. (29). Therefore, the square root existence
condition bS −

√
D > 0 in [1], in terms of the logarithm problem, can be rewritten as

a difference of the determinant factors, namely, bS −
√
D ⇔ (

√
f− −

√
f+)

2/2. Now
it becomes clear that this condition is always satisfied and therefore can be ignored, once
we assume that the both factors satisfy f− > 0 and f+ > 0. From all this we conclude
that the requirement f± > 0 constitutes one of the existence conditions of the logarithm
in Theorem 3. Also, bS −

√
D = 0 is equivalent to f+ = f−. This restricts the maximal

possible value of a(2)± . In particular, |a(2)± | 6 (a0 ± a123)
2. Remember that (instead

of a±) the notation a(2)± was introduced to keep an analogy with Cl0,3 case. It may be
negative a(2)± < 0 (see definition (27)), and therefore the notation, in general, cannot be
interpreted as a square of scalar unless a(2)± > 0. When a(2)± = 0, an additional condition
a0 ± a123 > 0 is required for logarithm to exist.

Since Cl2,1 algebra is rarely used, we will not provide explicit formulas for pure
blades (they can be found in the notebook ElementaryFunctions.nb in [5]). Also,
because generic formulas are similar to those in Cl0,3, the examples below are restricted
to special cases only.

Example 8 [Logarithm in Cl2,1 when a(2)± = 0 and a0 ± a123 > 0]. Let the MV be
A = 7 + (2e1 + e2 + 3e3) + (2e12 + 2e13 − 2e23) + 5I = 7 + a+A+ 5I . From (27)
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we find a(2)+ = 0, f+ = 144 and a(2)− = 0, f− = 144. Since a0 ± a123 = 7 ± 5 > 0,
from (28) we have A0− = log 2, A0+ = log 12, and from (29) A1,2− = (1−I)(a+A)/2,
A1,2+ = (1 + I)(a + A)/12. Finally, logA = (12 log 24 + 24e1 + 17e2 + 31e3 +
29e12 + 19e13 − 24e23 + 12 log(6)I)/24. Note, because MV coefficients a3 6= ±a12,
the condition D is False, therefore the free MV in (28) is absent, F̂ = 0.

Example 9 [Logarithm when a(2)− = 0, a0 − a123 = 0 and a(2)+ > 0, a0 + a123 < 0]. In
Cl2,1, these properties are satisfied by MV A = −2 + (7e1 + 4e2 + 10e3) + (−10e12 −
4e13 + 7e23) − 2I = −2 + a + A − 2I . From (27) we find a(2)+ = 140, f+ = 156
and a(2)− = 0, f− = 0. Then, because a0 − a123 = −2 − (−2) = 0 and a0 + a123 =
−2 − 2 < 0, from (28) we have A0− = log(0+) + (π + 2πc2−)Û , A0+ = log(156)/2.
From (29) A1,2− = 0, A1,2+ = 2(π + 2πc1+− arctan(

√
35/2))(1 + I)(a + A)/

√
35.

Then, using (26), we obtain the final answer logA = α0+α1e1+α2e2+α3e3+α12e12+
α13e13 + α23e23 + α123I , where β = arctan(

√
35/2) and

α0 =
1

2
(log 0+ + log

√
156), α123 = −1

4
(2 log 0+ − log 156),

α1 = − 1

20

(
5
√
3π − 3

√
35π + 2

√
35β

)
, α2 =

Å
π

2
√
3
+

2√
35
π − 2√

35
β

ã
,

α3 =

Å…
5

7
π +

5π

4
√
3
−
…

5

7
β

ã
, α12 =

Å
−
…

5

7
π +

5π

4
√
3
+

…
5

7
β

ã
,

α13 =

Å
π

2
√
3
− 2√

35
π +

2√
35
β

ã
, α23 =

1

20

(
5
√
3π + 2

√
35π − 2

√
35β

)
.

For simplicity, the constants ci± and Û were equated to zero. One can check that after
replacement of log(0+) by log x and substituting the final result into exponential for-
mula (23) in [2] and then computing the limit x→ 0, we recover the initial MV. To make
the verification simple when ci± and Û are included, one may choose concrete values for
arbitrary free constants ci± and arbitrary unit bivector Û2 = −1.

6 Roots of MV. Relations of the logarithm to GA inverse trigonomet-
ric and hyperbolic functions

When the GA logarithm is known, the powers of a MV may be found with Ar =
exp(r logA), i.e., by multiplying logarithm by r, which may be either integer or rational
number, and then computing the exponential. In the preprint [1], we have provided the
algorithm how to obtain all possible square roots (r = 1/2) of numerical MV for all n = 3
Clifford algebras. Here we want to show that the roots presented in [1] are consistent with
the mentioned exp-log formula. Thus, we will do a cross check of 3D GA logarithm
formulas by different methods. However, it must be stressed that the logarithm formula is
limited since it allows to find only a single5 square root, although, as shown in [1], there
may exist many (up to 16 in case of Cl2,1 algebra) roots. Thus, the GA logarithm function

5More precisely, two (plus/minus) roots.
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is not universal enough, although sometimes it may be useful if only a single fractional
root (r = 1/n and n ∈ N) is needed. For example, the logarithm of basis vector e1 in
Cl0,3 is log e1 = πe1/2. It is easy to check that after multiplication of logarithm by 1/3
and exponentiation, we obtain the cubic root 3

√
e1 = (

√
3 + e1)/2 that coincides with

Mathematica result 3
√
i = 6
√
−1 = (

√
3 + i)/3.

Example 10 [Cl3,0. Example 2 from [1]]. Logarithm of MV A = −1 + e3 − e12 + I/2
in Cl3,0 is

logA = log

√
5

2
− log 5

2
e3 +

1

2

Å
π − arctan

4

3

ã
e12 +

Å
−π + arctan

1

2

ã
I.

Multiplication of logarithm by 1/2 and exponentiation gives the root
√
A = (e3+e12)/2

− I , which coincides with root 4 of Example 2 in [1].
Like the trigonometric and hyperbolic functions may be expressed by exponentials

(Euler and de Moivre formulas), the inverse hyperbolic functions may be defined by
logarithms. Therefore, we can use the following definitions in GA to compute the inverse
hyperbolic and trigonometric functions of MV argument A.

For inverse hyperbolic functions:

artanhA =
1

2

(
log(1 + A)− log(1− A)

)
,

arcothA =

®
1
2 (log(1 + A−1)− log(1− A−1)), A 6= 0,
π
2 I, A = 0,

arcoshA = log
(
A+
√
A− 1

√
A+ 1

)
,

arsinhA = log
(
A+

√
A2 + 1

)
.

For inverse trigonometric functions:

arcsinA = −I log
(
AI +

√
1− A2

)
,

arccosA =
π

2
+ I log

(
AI +

√
1− A2

)
,

arctanA =
I

2

(
log(1− IA)− log(1 + IA)

)
,

arccotA =

®
1
2I(log(1− IA

−1)− log(1 + IA−1)), A 6= 0,
π
2 , A = 0.

These formulas are similar to those in the theory of real and complex functions except that
instead of the imaginary unit the pseudoscalar appears in trigonometric functions. How-
ever, earlier we have found [1] that in GA the functions with the square root, in general,
are multivalued. Thus, at a first sight, it may appear that the listed above equations with
square root are not valid in all circumstances. Nonetheless, our numerical experiments
show that they, in fact, are satisfied for all possible individual plus/minus pairs of square
roots6 (see more examples in the preprint [6]).

6This property does not allow us to write the equality sign between GA general expression log
√
B and

log(B)/2.
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7 Discussion and conclusions

The logarithm together with the exponential [2, 8] and square root [1] are the most im-
portant functions in Clifford geometric algebra (GA). Starting from the respective expo-
nential functions, we presented here, as far as we know, for the first time the basis-free
formulas for logarithms in all 3D GAs. The formulas for both the generic and special cases
may be directly applied in GA programming. They were cross-checked using the basis-
free GA exponential functions found in [2]. The derived formulas were implemented in
Mathematica and tested with thousands of randomly generated multivectors [5]. In all
cases the exponentiation of the logarithm was found to simplify to the initial MV.

Using numerical experiments [5], we observed that, in accord with the suggestion
in [7], the principal value of the logarithm can be defined as a GA logarithm having the
smallest determinant norm. In almost all cases the principal MV logarithm is attained by
setting arbitrary integer parameters ci in generic logarithms in Theorems 1–3 to zero. Ex-
ceptions from this rule, however, may occur in the case of simple and very specific MVs,
when the commuting MVs may exist (Sections 3.3 and 4.3) and therefore not restricted by
additional free MVs (Eqs. (12) and (24)). Apart from discrete parameters ci, we have also
found that continuous parameters represented by free unit vectors û or bivectors Û may be
included in the logarithm in special cases as well. The parameters vanish after exponentia-
tion of the logarithm and do not contribute to the MV norm. Recently, we have found that
such free parameters may be also introduced into lower-dimensional, quaternionic-type
Clifford algebras [9]. However, more investigations are needed in this direction.

Also, relations between the GA logarithm and square root of MV were investigated.
The well-known formula

√
A = exp(log(A)/2) served as an additional check of correct-

ness of GA logarithm. Unfortunately, this formula allows to compute only a single square
root from many possible roots that may exist in GA [1]. Nevertheless, such a comparison
was found to be very useful for testing purposes. Indeed, a test of square root of a MV is
an algebraic problem since it reduces to a solution of system of algebraic equations. On
the other hand, inversion of exponential used in finding the GA logarithm in the present
paper requires solving a system of complicated transcendental equations [9], a problem
which is much more difficult (but at the same time more general) task. The mentioned
exp-log relation also allows to check the condition whether the MV logarithm exists at all.
Indeed, since we know that exponential can be computed for all MVs and multiplication
by factor 1/2 cannot impose any restriction, it follows that it is the logA function, which
determines the existence condition for

√
A and vice versa. As a test, we have checked

using our algorithm [1] that for each MV, indeed, there exists a single square root that is
in agreement with the identity exp(log(A)/2) =

√
A.

In conclusion, in the present paper the basis-free expressions have been found for GA
logarithms in all 3D real algebras. The logarithm exists for all MVs in case of real Cl0,3
algebra. In Clifford algebra Cl3,0 (and Cl1,2) the logarithm exists for almost all MVs
except very small class that satisfies the condition (a2+ + a2− = 0)∧ (a20 + a2123 = 0). For
example, the logarithm of MV e1 ± e12 cannot be computed in Euclidean Cl3,0 algebra.
On the other hand, in Cl2,1 algebra the GA logarithm (as well as square root) is absent in
large sectors of a real coefficient space.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Logarithm of multivector in real 3D Clifford algebras 31

References

1. A. Acus, A. Dargys, Square root of a multivector of Clifford algebras in 3D: A game with
signs, 2020, arXiv:2003.06873.

2. A. Acus, A. Dargys, Coordinate-free exponentials of general multivector in Cl (p,q) algebras for
p+ q = 3, Math. Methods Appl. Sci., 2022, https://doi.org/10.1002/mma.8529.

3. A. Acus, A. Dargys, Calculation of the exponential in arbitrary Cl (p,q) Clifford algebra,
in E. Hitzer, G. Papagiannakis, P. Vasik (Eds.), Empowering Novel Geometric Algebra for
Graphics and Engineering. ENGAGE 2022, Lect. Notes Comput. Sci., Vol. 13862, Springer,
Cham, 2023, pp. 16–27, https://doi.org/10.1007/978-3-031-30923-6_2.

4. A. Acus, A. Dargys, The characteristic polynomial in calculation of exponential and elementary
functions in Clifford algebras, Math. Meth. Appl. Sci., 2023, https://doi.org/10.
1002/mma.9524.

5. A. Acus, A. Dargys, Geometric algebra Mathematica package, 2023, https://github.
com/ArturasAcus/GeometricAlgebra.

6. A. Acus, A. Dargys, Logarithm of multivector in real 3d Clifford algebras, 2023,
arXiv:2305.09469.

7. J.M. Chappell, A. Iqbal, L.J. Gunn, D. Abbott, Functions of multivector variables, PLoS One,
10(3):e0116943, 2015, https://doi.org/10.1371/journal.pone.0116943.

8. A. Dargys, A. Acus, Exponential of general multivector in 3d Clifford algebras, Nonlinear
Anal. Model. Control, 27(1):179–197, 2022, https://doi.org/10.15388/namc.
2022.27.24476.

9. A. Dargys, A. Acus, Exponentials and logarithms of multivector in low dimensional n =
p + q < 3 Clifford algebras, Nonlinear Anal. Model. Control, 27(6):1129–1149, 2022,
https://doi.org/10.15388/namc.2022.27.29528.

10. S. Garibaldi, The characteristic polynomial and determinant are not ad hoc constructions, Am.
Math. Mon., 111(9):761–778, 2004, https://doi.org/10.1080/00029890.2004.
11920140.

11. J. Helmstetter, Characteristic polynomials in Clifford algebras and in more general algebras,
Adv. Appl. Clifford Algebras, 29(30), 2019, https://doi.org/10.1007/s00006-
019-0944-5.

12. N.J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
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