
Nonlinear Analysis: Modelling and Control, Vol. 29, No. 2, 365–378
https://doi.org/10.15388/namc.2024.29.34669

Press

Comparative analysis of classical and stochastic Maccari
system of nonlinear equations*

Muhammad Sajid Iqbala,b , Mustafa Incc,d,e,1 , Saba Sohailf , Adil Raheemg,
Shabbir Hussainh, Emad E. Mahmoudi

aSchool of Foundation Studies and Mathematics, OUC
with Liverpool John Moores University (UK),

Qatar Campus, 12253 Doha, Qatar
bDepartment of Humanities and Basic Science,
Military College of Signals, NUST,
Islamabad, Pakistan
sajid606@gmail.com
cDepartment of Mathematics, Science Faculty, Fırat University,
23119 Elazig, Türkiye
minc@firat.edu.tr
dDepartment of Computer Engineering, Biruni University,
34010 Istanbul, Türkiye
eDepartment of Medical Research, China Medical University,
40402 Taichung, Taiwan
fDepartment HB&S, CEME, NUST,
Islamabad, Pakistan
sabas3780@gmail.com
gPakistan International School, Al Khobar, Saudi Arabia
adil.raheem.02@gmail.com
hDepartment of Mathematics and Statistics,
The University of Lahore,
Lahore, Pakistan
cmshabbirhussain93@gmail.com
iDepartment of Mathematics and Statistics,
College of Science, Taif University,
PO Box 11099, Taif 21944, Saudi Arabia
emad_eluan@yahoo.com

Received: June 4, 2023 / Revised: November 26, 2023 / Published online: February 23, 2024

Abstract. In this paper, the exact solutions of classical and stochastic Maccari system is constructed.
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Maccari system are added for the physical purpose. The existence of results for the real part of
underlying system are discussed first time for a priori estimates. The perturbations, which disturbed
the formation of Langmuir waves, are geometrically expressed in this article. Due to the presence
of multiplicative noise term, our system brings a real flavor to the dynamics of the problem.

Keywords: stochastic partial differential equation, Langmuir soliton, MEDA method.

1 Introduction

The major contribution of partial differential equations (PDEs) is in the field of anal-
ysis and geometry. The behavior of electromagnetic radiation, the dynamical motion
of photons and electrons in the molecules, propagation of sound, heat flow, waves of
any type, etc. are all expressed with the help of PDEs. PDEs also play a vital role in
general relativity, Riemannian geometry, differential geometry, etc. [19]. The significant
importance of PDEs is in the fields of physics, applied mathematics, and engineering. In
short, PDEs are very helpful in describing different phenomena such as fluid dynamics,
elasticity, and quantum mechanics. Due to its wide variety of applications in physics and
mathematical analysis, numerous methods have been presented to study the solution and
physical behavior of nonlinear wave equations [16]. In the study of nonlinear physical
phenomena for various fields of engineering, science, mathematical physics, biophysics,
the propagation of shallow water waves, high-energy physics, fluid dynamics, plasma,
optical fibers, and so on, the research of exact traveling wave solutions to nonlinear
evolution equations (NLEEs) is crucial [7]. Numerous techniques, such as the inverse
scattering transform [1], Hirota’s bilinear method [8], the Darboux transformation method
[6], etc., have been devised to determine the explicit solution to NLEEs.

The bell-shaped sech solutions and kink-shaped tanh solutions physically demonstrate
the behavior of nonlinear waves especially observed in the fluid dynamics, plasma, and
optical fibers. Recently, researchers have shown more interest in the exploration of dif-
ferent kinds of exact solutions of NLEEs like periodic, quasiperiodic, rational, cuspon,
complexiton, peakon, negaton, soliton solutions, etc. [12]. Exact solutions to nonlinear
partial differential equations play an essential position in nonlinear physical science be-
cause they bring forth deep information about the physical aspect of many problems and
their applications. In short, recently distinct methods for attaining the explicit solutions of
solitary and traveling wave solutions of NLEEs have been presented such as homogenous
balance method [25], solitary wave ansatz method [14], Jacobi elliptic function expansion
method [5], the tanh-function method [15], F -expansion method [13], projective Ricatti
equation method [26], (G′/G)-expansion method [17], and so on.

In this manuscript, we examine the exact solution of a more general coupled nonlinear
Maccari system by applying the technique of the modified extended direct algebraic
(MEDA) method. The objective of this article is to acquire the exact traveling wave
solution of a coupled stochastic Maccari system by applying the technique of MEDA
method [4, 23]. One example of the nonlinear evolution equation is the Maccari system,
which expresses the behavior of the motion of the isolated waves observed in a small part
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of space in many fields such as plasma physics, hydrodynamics, nonlinear optics, and
so on. The exact solutions of the Maccari system have been discussed by Zhang [30] by
applying the technique of exp-function method.

2 Statement of problems

This paper deals with optimum existence for the solutions and extraction of soliton solu-
tions for stochastic Maccari system (MS) described by

ıψt + ψxx + ψv = β̇ψ, (1)

vt + vy +
(
|ψ|2

)
x
= 0 (2)

with initial conditions

ψ(x, y, 0) = ψ(0) = ψ0, v(x, y, 0) = v(0) = v0,

where the complex-valued scalar function ψ and real-valued scalar function v are the
functions of independent spatial variables x, y and the temporal variable t > 0. Also, they
respectively describe the high-frequency waves and the potential transferred through such
waves. The Maccari system (MS) was introduced in a little portion of space to describe
the propagation of the different isolated waves in numerous fields of natural science. This
system is important to show the nature of sonic Langmuir solitons in plasma physics.

The construction and, more generally, the generator of the dynamical system in the
classical sense are basically the stochastic differential equations. The solutions of these
types of equations using the given initial values encode information about the Markov
process. At a specific time, the solutions define a random diffeomorphism, and the family
of these diffeomorphisms highlighted the closed cochain over the Wiener space [2]. Pro-
viding the exact solitons solutions, we also expressed the existence of these solutions by
using the fixed point theory. The next section yields the directions about the continuous
interval for the existence of solutions. Section 3 expresses the detailed steps for the
algorithm of the MEDA method, and Section 4 brings forth the application of the MEDA
method. Section 5 demonstrates the solutions plots. Section 6 underlines the physical
interpretation, and Section 7 debates over the conclusion.

3 Existence of solutions

In this section, we discuss the existence and continuity of solutions of stochastic Maccari
system (1), (2) whose integral representation is

ψ(x, y, t) = ψ0 +

t∫
0

(
|ψxx|+ |ψ||v|+ |β̇||ψ|

)
dτ, (3)

v(x, y, t) = v0 +

t∫
0

(
vy +

(
|ψ|2

)
x

)
dτ. (4)
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The construction of Eqs. (3) and (4) guides us to rewrite it in the form of fixed operator,
so we have

Ψ = Ψ
(
ψ(x, y, t)

)
= ψ0 +

t∫
0

(
|ψxx|+ |ψ||v|+ E|β̇||ψ|

)
dτ, (5)

V = V
(
v(x, y, t)

)
= v0 +

t∫
0

(
vy +

(
|ψ|2

)
x

)
dτ. (6)

The operator equation is a fixed point representation of the problem for ψ(x, y, t) and
v(x, y, t). Hence, any fixed functionsψ∗(x, y, t) and v∗(x, y, t) of Ψ(x, y, t) and V (x, y, t)
will turn out to be a solution of not only of Eqs. (1) and (2) but also of Eqs. (3), 4. Before
proceeding for the construction of fixed points of Eqs. (5) and (6), we must look for the
topological spaces. Here we choose the space of continuous functions C equipped with
supremum norm, i.e., m∗ ∈ C[0, ρ]⇒ ‖m∗‖C = max[0,ρ] |m∗|.

Assuming that the functions ψ, v, ψ0, v0, ψxx, vy , (|ψ|2)x, β are continuous and,
consequently, locally bounded,

‖v‖ 6 r, ‖ψ‖ 6 r, ‖ψxx‖ 6 k1, β 6 k2,(
‖ψ‖2

)
x
6 k3, ‖vy‖ 6 k4, ‖v0‖ 6 k5, ‖ψ0‖ 6 k6.

Here as r, k1, k2, k3, k4, k5, k6 > 0.
For the analysis of the existence of the solutions to the underlying system, we shall

apply an important and basic fixed point theorem in the Banach space of all continuous
functions known as Schauder fixed point theorem [10], which is a generalization of
Brouwer’s fixed point theorem for infinite dimensional space; see [11]. There are two
important steps in Schauder’s fixed point theorem, which are the implications of the
statement of the theorem.

Theorem 1. (See [18].) Suppose B is a closed, convex, and bounded subset of Banach
space C. The functions Ψ(x, y, t) and V (x, y, t) are continuous operators, which map the
set B into itself, and the mappings Ψ(B) : B → B and V (B) : B → B are relatively
compact or precompact. Then the operators Ψ(x, y, t) and V (x, y, t) must have at least
one fixed point x∗ in B.

In view of the above result, the following three conditions must be verified:

(i) Ψ(x, y, t) : B → B,
(ii) V (x, y, t) : B → B,

(iii) Ψ(B) and V (B) are relatively compact.

The set B is closed, convex, and bounded subset of C[0, ρ], and it is defined by

Br(Θ) =
{
ψ, v ∈ C[0, ρ]: ‖ψ‖ = ‖v‖ 6 r

}
,
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where the capital theta symbol Θ denotes the zero element of function space C, r is the
radius of the ball and define the complete length of continuity of the solution.

To verify conditions (i) and (ii), we shall use B = Br(Θ). For this purpose, we apply
the norm on both sides of Eqs. (5) and (6), and further simplification leads to

E‖Ψ‖ 6 k6 +
(
r2 + E‖β̇‖r + k1

)
ρ,

‖V ‖ 6 k5 +
(
k4 + k3

)
ρ,

where ρ = (t − 0), length of continuity. For mapping the ball into itself, we have the
following conditions:

ρ 6
r − k6

r2 + k2r + k1
, ρ 6

r − k5
k4 + k3

.

This will hold true if r > k6 and r > k5.
Now this step is essential for the accomplishment of the existence of a solution by

Schauder’s well-known result for the existence in an infinite dimensional setting. For
this, we again consider Eqs. (5) and (6). The equicontinuity of Eq. (5) is checked at two
points t and t∗. Then following the same pattern, we checked the equicontinuity of Eq. (6).
Therefore, we have the following equation:

Ψi(x, y, t)− Ψi(x, y, t∗) = ψi0 +

t∫
0

[∣∣∣∣∂2ψi∂x2

∣∣∣∣+ |ψi||v|+ |β̇||ψi|]dτ − ψi0
+

t∗∫
0

[∣∣∣∣∂2ψi∂x2

∣∣∣∣+ |ψi||v|+ |β̇||ψi|]dτ.
After applying the norm and using the triangular inequality, we have

E
∥∥Ψi(x, y, t)− Ψi(x, y, t∗)∥∥ 6

(
r2 + E‖β̇‖r + k1

)
|t− t∗|.

The equicontinuity of Eq. (6) gives us the final result

E
∥∥Vi(x, y, t)− Vi(x, y, t∗)∥∥ 6 (k4 + k3)|t− t∗|.

Clearly,E‖Ψi(x, y, t)−Ψi(x, y, t∗)‖ → 0 as t→ t∗. Similarly, ‖Vi(x, y, t)−Vi(x, y, t∗)‖
→ 0 as t → t∗, and even for a special pair (x∗, y∗, t∗), E‖Ψi(x, y, t) − Ψi(x∗, y∗, t∗)‖,
‖Vi(x, y, t)−Vi(x, y, t∗)‖ → 0 as (x, y, t)→ (x∗, y∗, t∗). So, the families Ψi(x, y, t) and
Vi(x, y, t) are turn out to be equicontinuous, so, Arzelà–Ascoli theorem [9] is applicable.
By Arzelà–Ascoli there exist subsequences Ψij (x, y, t) and Vij (x, y, t) of Ψi and Vi such
that Ψij and Vi,j are uniformly convergent. So, the operators Ψ(x, y, t) and V (x, y, t) turn
out to be relatively compact operators. So, Schauder theorem is applicable [9,11,24], and
there exists at least one solution to the stochastic Maccari system, provided the noise term
made bounded.
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4 Specification for modified extended direct algebraic method

This portion describes an effective technique for finding exact solutions of the system,
namely, the modified extended direct algebraic method (MEDA) [3, 21, 22, 27, 28, 31].
This strategy is more advanced and modified compared to exact traveling wave solutions
for (2 + 1)-dimensional Konopelchenko–Dubrovsky equation by using the hyperbolic
trigonometric functions methods. New analytical solutions and modulation instability
analysis for the nonlinear (1+1)-dimensional phi-four model [20]. The modified extended
direct algebraic method (MEDA) is the latest and implemented on nonlinear space-time
systems. This technique enables the researchers to get fresh and wide-ranging closed-form
soliton solutions compared to others.

For a detailed description of the MEDA method, see [29]. We consider the following
PDE in two independent variables:

G(w,wx, wt, wxx, . . . ) = 0. (7)

Using the transformation w(x, t) = w(δ), δ = ı(x − ωt), Eq. (7) is transformed to an
ODE

I(w, ıw′,−ıωw′, . . . ) = 0, (8)

where w′ = dw/dδ. The following ansatz will be used in order to find the solution of
Eq. (8).

So,

w(δ) = b0 +

N∑
i=1

(
biu

i + aiu
−i), (9)

u′ = a+ u2, (10)

where a is the parameter to be determined, and u = u(δ), u′ = du/dδ. The value of
N can be found by using the balancing principle. By using Eqs. (8)–(10) we construct
a system of algebraic equations with respect to bi, ai, a, and ω. After collecting all the
same-order term of u and equating them equal to zero, we determine the values of b0, bi,
ai, a, and ω. The general solution of Eq. (10) is as follows.

Case 1: a < 0.

u = −
√
−a tanh(

√
−a δ) or u = −

√
−a coth(

√
−a δ).

It depends on initial conditions.
Case 2: a > 0.

u =
√
a tan(

√
a δ) or u = −

√
a cot(

√
a δ).

It depends on initial conditions.
Case 3: a = 0.

u = −1

δ
.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Classical and stochastic Maccari system of nonlinear equations 371

From backward substituting these results in Eq. (9), the exact travelling wave solu-
tions of Eq. (7) can be obtained.

5 Application of modified extended direct algebraic method

In this section, MEDA method has been used to find the exact solutions of stochastic
Maccari system (1), (2) with the dependent variables ψ = ψ(x, y, t) and v = v(x, y, t)
specifying the complex and real scalar fields. x, y, and t are the spatial and temporal
independent variables, respectively, and β = β(x, y, t) is the noise term.

Using the transformation

ψ(x, y, t) = U(λ)eıφ, v(x, y, t) = V (λ), β(x, y, t) = β(λ),

λ = λ1x+ λ2y + λ3t, φ = φ1x+ φ2y + φ3t,

Eqs. (1) and (2) become

ıλ3U
′ − Uφ3 + λ21U

′′ + 2ıU ′λ1φ1 − Uφ21 + UV − βU = 0, (11)

V ′(λ3 + λ2) + λ1
(
U2
)′

= 0. (12)

Integrating Eq. (12) and for the sake of simplicity, we are taking constant of integration
equal to zero. So, we have

V = − λ1U
2

λ3 + λ2
. (13)

Using Eq. (13), Eq. (11) becomes

ıλ3U
′ − Uφ3 + λ21U

′′ + 2ıU ′λ1φ1 − Uφ21 + U

(
− λ1U

2

λ3 + λ2

)
− βU = 0.

Separating the real and imaginary parts, we have

ı(λ3 + 2λ1φ1)U
′ = 0,

λ21U
′′ − λ1U

3

λ3 + λ2
−
(
φ21 + φ3 + β

)
U = 0. (14)

Further simplification leads us to rewrite Eq. (14) as follows:

η1U
′′ + η2U

3 + η3U = 0, (15)

where
η1 = λ21, η2 = − λ1

λ3 + λ2
, η3 = −

(
φ21 + φ3 + β

)
as N = 1 (by using the homogenous balance in Eq. (15)). So, its solution will be of the
form

U(λ) = α0 + α1P + γ1P
−1, P ′ = γ + P 2, (16)

Nonlinear Anal. Model. Control, 29(2):365–378, 2024
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where α0, α1, γ1, γ are the arbitrary constants, and their values can be determined by
Eqs. (15) and (16). We get the following system of algebraic equations:

2α1η1 + η2α
3
1 = 0, 3α0α

2
1η2 = 0,

2α1η1γ + 3η2α
2
0α1 + 3η2α

2
1 + η3α1 = 0,

η2α
3
0 + 6η2α0α1γ1 + η3α0 = 0,

2η1γ1γ + 3η2α
2
0γ1 + 3η2γ

2
1α1 + η3γ1 = 0,

3γ21η2α0 = 0, 2η1γ1γ
2 + η2γ

3
1 = 0.

Further simplification leads us to write

α0 = 0, α1 = ı

√
2η1
η2

, γ = −3η2γ1α1 + η3
2η1

, γ1 = ıγ

√
2η1
η2

.

So, the exact solution of Eqs. (1) and (2) are given as follows.

Case 1: γ < 0.

ψ(x, y, t) =
(
α0 + α1

[√
−γ tanh

(√
−γλ

)]
+ γ1

[√
−γ tanh

(√
−γλ

)]−1)
eıφ,

v(x, y, t) = − λ1
λ3+λ2

(
α0 + α1

[√
−γ tanh

(√
−γλ

)]
+ γ1

[√
−γ tanh

(√
−γλ

)]−1)2
.

Case 2: γ > 0.

ψ(x, y, t) =
(
α0 + α1

[√
γ tan

(√
γλ
)]

+ γ1
[√
γ tan

(√
γλ
)]−1)

eıφ,

v(x, y, t) = − λ1
λ3+λ2

(
α0 + α1

[√
γ tan

(√
γλ
)]

+ γ1
[√
γ tan

(√
γλ
)]−1)2

.

Case 3: γ = 0.

ψ(x, y, t) =

(
α0 −

α1

λ
− γ1λ

)
eıφ, v(x, y, t) = − λ1

λ3 + λ2

(
α0 −

α1

λ
− γ1λ

)2

.

6 Comparisons of solutions plots

We present the surface plots for different parameter values in Figs. 1–6.

Case 1: φ1 = 3, φ2 = 20, φ3 = 2, λ1 = 6, λ2 = 7, λ3 = 2 for both solution ψ and v.
Case 2: φ1 = 3, φ2 = 20, φ3 = 2, λ1 = 6, λ2 = 7, λ3 = 4 for ψ and λ3 = 0.2 for v.
Case 3: φ1 = 3, φ2 = 20, φ3 = 2, λ1 = 6, λ2 = 7, λ3 = 4 for ψ and φ1 = 0.3,

φ2 = 0.20, φ3 = 10, λ1 = 0.6, λ2 = 0.7, λ3 = 10 for v.

https://www.journals.vu.lt/nonlinear-analysis
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Figure 1. Surface plot of solution ψ for case 1.

Figure 2. Surface plot of solution v for case 1.
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Figure 3. Surface plot of solution ψ for case 2.

Figure 4. Surface plot of solution v for case 2.
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Figure 5. Surface plot of solution ψ for case 3.

Figure 6. Surface plot of solution v for case 3.
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7 Graphical interpretation

In all the surface plots the first figure represents the plot of classical Maccari system, and
the second and third figures physically represent the Maccari system in the presence of
noise term using the Gaussian white noise and random variable in the MATLAB. The
classical Maccari system demonstrated the behavior of Langmuir solitons, which are
basically the high-frequency waves in the field of quantum mechanics, plasma physics,
nonlinear optics, hydrodynamics, etc. Langmuir solitons are also called Langmuir oscilla-
tions. In short, they are the energy-dissipated oscillations. Due to the high frequency and
the motion of isolated waves in the form of Langmuir soliton, the perturbation factor
is described by the choice of noise term as clearly shown in all surface plots. Also,
if the noise term approaches zero, then we again come back to our classical model.
The smoothness of the solitons wave from Figs. 1–6 instructed us that our system is
of classical nature in the absence of noise term, where no fluctuation is observed in the
wave formation. However, due to the presence of noise terms, the inevitable perturbation
and spikes are observed due to the interaction of surroundings. Due to the presence of
multiplicative noise terms in the system, the spatiotemporal perturbation in the formation
of continuum regularization of Langmuir solitons is observed.

8 Conclusion

We consider the more generic form of the Maccari system. Due to the presence of mul-
tiplicative noise terms, the nature of our system is nonstationary. The stochastic model
of the system provides us with deep insight into the structural and physical properties of
the system in the presence of random fluctuations. Also, the existence theory provides us
ample information about the existence of solution and their equicontinuity.
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