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Abstract. In this article, we study the controllability of ψ-Hilfer fractional differential equations
with infinite delay. Sufficient conditions for controllability results are obtained by using the notion
of the measure of noncompactness and the Mönch fixed point theorem. The novel feature of
this study is to inquire into the controllability notion by using ψ-Hilfer fractional derivative, the
generalized variant of the Hilfer derivative. Finally, we provide a numerical example to illustrate
our main result.
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1 Introduction

The techniques of fractional calculus help in the development of mathematical models
that frequently more accurately describe the dynamic response of live systems to mechan-
ical, chemical, and electrical stimuli [25]. By using these techniques more frequently,
bioengineers may be better able to create, describe, and control biomedical devices.
The research publications [1, 12, 23] can be study by the readers on the theory of frac-
tional differential systems. The Hilfer fractional derivative [14] has technical property that
makes it significantly more relevant than other fractional derivatives since it unifies the
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Riemann–Liouville and Caputo fractional derivatives. Due to this reason, Hilfer fractional
derivatives are a stronger mathematical tool for studying real-world occurrences and the
resulting technical advancements [13, 27]. A new fractional derivative was introduced
by Sousa et al. [4] called “ψ-Hilfer fractional derivative”, which generalized a number
of earlier fractional derivatives. The advantage of this type of fractional derivative is
the flexibility to choosing the kernel ψ, which enables unification and recovery of the
majority of earlier studied fractional differential equations [6]. The importance ofψ-Hilfer
fractional differential equations has made it essential to study these kinds of equations
[26].

One of the fundamental concepts in mathematical control theory is controllability,
and this plays an important role in solving many control problems such as stabilising
unstable systems through feedback or optimal control [8–10]. Controllability of nonlinear
systems in finite-dimensional spaces has been studied extensively by using fixed point
theorems [2, 19, 20]. Compactness and boundedness of the corresponding operator are
required for controllability results for fractional differential equations obtained by the
Schauder fixed point theorem. Therefore, many researchers have worked to find sufficient
conditions to ensure the controllability results of various systems without involving the
compactness of the operator [21, 24]. Very recently, the authors Wang and Zhou [29]
found some conditions guaranteeing the complete controllability of fractional evolution
systems without assuming the compactness of characteristic solution operators by means
of the Mönch fixed point technique and the measures of noncompactness. Wang et al. [28]
established two sufficient conditions for nonlocal controllability for fractional evolution
systems. These theorems guarantee the effectiveness of controllability results under some
weakly noncompactness conditions.

Kavitha et al. [17] discussed the approximate controllability of the Hilfer fractional
neutral differential inclusions with infinite delay, and they [16] studied the results on
controllability of Hilfer fractional differential equations with infinite delay via measure
of noncompactness by means of the Mönch fixed point theorem. Also, Kavitha et al. [15]
discussed the controllability of Hilfer fractional neutral differential equations with infinite
delay via measures of noncompactness. Yet, to our knowledge, no research on the control-
lability of ψ-Hilfer fractional derivative has been published. Therefore, in this paper, we
study the controllability of ψ-Hilfer fractional differential equations with infinite delay via
measure of noncompactness. This result can cover the results of controllability involving
Hilfer fractional differential equations by the appropriate choice of ψ.

Let us take the ψ-Hilfer fractional differential equations with control having the form

Dδ,γ;ψ
0+ x(s) = Ax(s) + g(s, xs) +Bu(s), s ∈ I = (0, d], (1)

I
(1−δ)(1−γ);ψ
0+ x(s) = ~(s) ∈ Bh, (2)

where δ ∈ (1/2, 1), γ ∈ [0, 1], Dδ,γ;ψ
0+ is ψ-Hilfer fractional derivative operator of order δ

and type γ, I
(1−δ)(1−γ);ψ
0+ (·) is ψ-Riemann–Liouville integral of order (1 − δ)(1 − γ),

and x(·) takes the values in Banach space Z with ‖·‖, the control function u(·) ∈ L2(I,U),
Banach space of admissible control functions, with U as a Banach space, and B :
L2(I,U) → L2(I,Z) is a bounded linear operator. The operator A : D(A) ⊂ Z → Z is
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the infinitesimal generator of analytic semigroup {T (s)}s>0 on Z. For analytic semigroup
{T (s)}s>0, there is a constant M > 1 such that M := sups∈[0,∞) |T (s)| < ∞, and
g : I ×Bh → Z is a given function, where Bh is an abstract phase space to be defined
later. The histories xs : (−∞, 0]→ X defined by xs(r) = x(s+r), r 6 0, belong to Bh.
Our main contribution is the controllability of the ψ-Hilfer fractional differential equation.

The paper is organized as follows. In Section 2, we briefly present some basic no-
tations and preliminaries. In Section 3, we establish some sufficient conditions for con-
trollability of ψ-Hilfer fractional differential equations with infinite delay via measure of
noncompactness. Finally, an example is given to illustrate the results in Section 4.

2 Preliminaries

In this section, we discuss the notations, definitions, lemmas, and introductory informa-
tion that are necessary to establish our main results.

Let C(I,Z), C1(I,Z), AC k(I,Z), Ck(I,Z) be the spaces of continuous functions,
continuously differentiable functions, k-times absolutely continuous, and k-times contin-
uously differentiable functions from I → Z, respectively. Suppose that σ = δ + γ − γδ,
we define C1−σ,ψ(I,Z) = {x: (ψ(s) − ψ(0))1−δx(s) ∈ C(I,Z)} with norm ‖x‖σ,ψ =
sup{(ψ(s)− ψ(0))1−σ‖x‖}. Clearly, C1−σ,ψ(I,Z) is a Banach space. Also, let Lp(I,Z)
be the Banach space of functions g : I × Bh × Z → Z, which are Bochner integrable,
normed with ‖g‖Lp(I,Z), and we use g with norm ‖g‖Lp(I,R+) whenever g ∈ Lp(I,R+)
for some p with 1 6 p 6∞.

Now, we discuss the abstract phase Bh [7]. Let h : (−∞, 0]→ (0,∞) be continuous
function with Ih =

∫ 0

−∞ h(z) dz < +∞. For each a > 0,

B =
{
ξ : [−a, 0]→ Z

∣∣ ξ(z) is bounded and measurable
}
,

with
‖ξ‖[−a,0] = sup

z∈[−a,0]

∥∥ξ(z)∥∥ ∀ξ ∈ B.

Now, we define

Bh =

{
ξ : (−∞, 0]→ Z

∣∣∣ for any a > 0, ξ|[−a,0] ∈ B and

0∫
−∞

h(z)‖ξ‖[z,0] dz <∞

}

with

‖ξ‖Bh
=

0∫
−∞

h(z)‖ξ‖[z,0] dz ∀z ∈ Bh.

Hence, (Bh, ‖·‖Bh
) is a Banach space.

Now, we discuss

B′h =
{
x : (−∞, d]→ Z

∣∣ x|I ∈ C(I,Z), x0 = ~ ∈ Bh

}
.
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Set ‖·‖d be seminorm in B′h defined by

‖x‖d = ‖~‖Bh
+ sup

{∥∥x(s)
∥∥: s ∈ [0, d]

}
, x ∈ B′h.

Lemma 1. (See [19].) Suppose x ∈ B′h, then for β ∈ I, xβ ∈ Bh and

k
∣∣x(β)

∣∣ 6 ∥∥xβ∥∥Bh
6 ‖~‖Bh

+ k sup
ζ∈[0,β]

∣∣x(ζ)
∣∣,

where k =
∫ 0

−∞ h(β)dβ <∞.

Definition 1. (See [18].) Left-sided Riemann–Liouville fractional integral of order δ > 0
of integrable function w defined on [a, b] is defined by

Iδa+w(s) =
1

Γ(δ)

s∫
a

(s− r)δ−1w(r) dr, s > a.

Definition 2. (See [18].) Left-sided Riemann–Liouville fractional derivative of order
δ > 0 is defined by

Dδ
a+w(s) =

dk

dsk
Ik−δa+ w(s),

where k = [δ] + 1, w ∈ AC k[a, b].

Definition 3. (See [18].) The left-sided Caputo fractional derivatives of order δ defined
by

cDδ
a+w(s) =

(
Ik−δa+

dk

dsk
w

)
(s), s > a,

where k = [δ] + 1 and w ∈ AC k[a, b].

Definition 4. (See [14].) Left-sided Hilfer fractional derivatives of order δ and type γ
(0 6 γ 6 1) is defined by

Dδ,γ
a+w(s) =

(
I
γ(k−δ)
a+ D

δ+γ(k−δ)
a+ w

)
(s), s > a,

where k = [δ] + 1, w ∈ AC k[a, b].

Definition 5. (See [18].) Let ψ′(x) ∈ C1([a, b]) with ψ′(x) > 0 for all x ∈ (a, b). For
δ > 0, ψ-Riemann–Liouville fractional integral of a function w of order δ is defined by

Iδ;ψa+ w(s) =
1

Γ(δ)

s∫
a

ψ′(r)
(
ψ(s)− ψ(r)

)δ−1
w(r) dr, s > a, δ > 0.
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Table 1. Particular cases of ψ-Hilfer fractional derivatives.

Dδ,γ;ψ
a+

Particular cases

ψ(s) γ

ψ(s) 0 ψ-Riemann–Liouville derivative
ψ(s) 1 ψ-Caputo derivative
s 0 Riemann–Liouville derivative
s 1 Caputo derivative
s γ Hilfer derivative

log s 0 Hadamard derivative
log s 1 Caputo–Hadamard derivative
log s γ Hilfer–Hadamard derivative

Definition 6. (See [18].) Let ψ′(x) ∈ C1([a, b]) with ψ′(x) > 0 for all x ∈ (a, b). For
δ > 0, ψ-Riemann–Liouville fractional derivative of a function w of order δ is defined by

Dδ;ψ
a+ w(s) =

(
1

ψ′(s)

d

ds

)k
Ik−δ;ψa+ w(s)

=
1

Γ(k−δ)

(
1

ψ′(s)

d

ds

)k s∫
a

ψ′(r)
(
ψ(s)−ψ(r)

)k−δ−1
w(r) dr, s>a, δ>0,

where k − 1 = [δ].

Definition 7. (See [4].) Let ψ ∈ Ck([a, b]) be positive function on [a, b] such that ψ′(x)
is continuous and ψ′(x) > 0 for all x ∈ (a, b), and let w ∈ Ck([a, b]). Then the left
ψ-Hilfer fractional derivative of w of order δ and type γ is defined by

Dδ,γ;ψ
a+ w(s) = I

γ(k−δ);ψ
a+

(
1

ψ′(s)

d

ds

)k
I
(1−γ)(k−δ);ψ
a+ w(s),

where k − 1 = [δ].

Remark 1. We provide Table 1 showing the particular cases of Definition 7.

Lemma 2. A functionL : (−0, d]→Z is an integral solution of system (1)–(2) ifL satisfies
the following:

(i) L : [0, d]→ Z is continuous,
(ii) Iδ;ψ0+ x(s) ∈ D(A) for s ∈ [0, d], and

(iii) system (1)–(2) is equivalent to [5]

x(s) =
~(0)

Γ(δ(1− γ) + γ)
(ψ(s)− ψ(0))(δ−1)(1−γ)

+
1

Γ(δ)

s∫
a

ψ′(r)
(
ψ(s)− ψ(r)

)δ−1
g(r, xr) dr

+
1

Γ(δ)

s∫
a

ψ′(r)
(
ψ(s)− ψ(r)

)δ−1
Bu(r) dr, s ∈ I. (3)
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https://doi.org/10.15388/namc.2024.29.34706


384 I. Haque et al.

We introduce the mild solution of fractional differential system (1)–(2) by using the
Wright function Mδ(z) defined by

Mδ(z) =

∞∑
n=1

(−z)n−1

(n− 1)!Γ(1− δn)
, 0 < δ < 1, z ∈ C,

which satisfies the following equality:

∞∫
0

θτMδ(θ) dθ =
Γ(1 + τ)

Γ(1 + δτ)
for θ > 0.

Lemma 3. If (3) holds, then we have

x(s) = Sδ,γ;ψ(s, 0)~(0) +

s∫
0

Pδ,γ;ψ(s, r)g(r, xr)ψ
′(r) dr

+

s∫
0

Pδ,γ;ψ(s, r)Bu(r)ψ′(r) dr, s ∈ I,

where the operators Sδ,γ;ψ(s, r) and Pδ,γ;ψ(s, r) defined by

Pδ,γ;ψ(s, r) =
(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r),

Qδ,γ;ψ(s, r) = δ

∞∫
0

θMδ(θ)T
((
ψ(s)− ψ(r)

)δ
θ
)

dθ

and

Sδ,γ;ψ(s, r) = I
(1−δ)γ;ψ
0+ Kδ,γ;ψ(s, r).

Proof. The proof is similar to [11].

Due to Lemma 3, we give the following definition of the mild solution of (1)–(2).

Definition 8. A function x : (−∞, d]→ Z is called mild solution of fractional differential
system (1)–(2) if x is continuous with x0 = ~(0) ∈ Bh on (0,−∞] and satisfies

x(s) = Sδ,γ;ψ(s, 0)~(0) +

s∫
0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)g(r, xr)ψ
′(r) dr

+

s∫
0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)Bu(r)ψ′(r) dr, s ∈ I,
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where the characteristic solution operators are given by

Sδ,γ;ψ(s, r) =

∞∫
0

φδ(θ)T
((
ψ(s)− ψ(r)

)δ
θ
)

dθ

and

Qδ,γ;ψ(s, r) = δ

∞∫
0

θφδ(θ)T
((
ψ(s)− ψ(r)

)δ
θ
)

dθ,

where φδ(θ) = (1/δ)θ−1−1/δρδ(θ
−1/δ) is the probability density function defined on

θ ∈ (0,∞), that is,

φδ(θ) > 0,

∞∫
0

φδ(θ) dθ = 1

and

ρδ(θ) =
1

π

∞∑
k=1

(−1)k−1θ−kδ−1
Γ(kδ + 1)

k!
sin(kπδ).

Remark 2. (See [30].) For µ ∈ [0, 1],
∞∫
0

θµφδ(θ) dθ =

∞∫
0

θ−δµρδ(θ) = 1.

Lemma 4. The operators Sδ,γ;ψ(s, r) and Qδ,γ;ψ(s, r) have the following properties:

(i) For any fixed s > r > 0, Sδ,γ;ψ(s, r) and Qδ,γ;ψ(s, r) are bounded linear
operators with∥∥Sδ,γ;ψ(s, r)x

∥∥ 6
M(ψ(s)− ψ(0))(δ−1)ko(γ−1)

Γ(δ(1− γ) + γ)
‖x‖

and ∥∥Qδ,γ;ψ(s, r)x
∥∥ 6

M

Γ(δ)
‖x‖

for all x ∈ Z.
(ii) The operators Sδ,γ;ψ(s, r) and Qδ,γ;ψ(s, r) are strongly continuous for all s >

r > 0, that is, for every x ∈ Z and 0 6 r 6 s1 < s2, s1, s2 ∈ I, we have∥∥Sδ,γ;ψ(s2, r)x− Sδ,γ;ψ(s1, r)x
∥∥→ 0

and ∥∥Qδ,γ;ψ(s2, r)x−Qδ,γ;ψ(s1, r)x
∥∥→ 0

as s1 → s2.

Proof. The proof is similar to [30].
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Definition 9. The fractional differential system (1)–(2) is said to be controllable on I if
for each continuous initial functions ~ ∈ Bh, x1 ∈ Z, there exists u ∈ L2(I,U) such that
the mild solution x(s) of (1) with (2) satisfies x(d) = x1.

Now, let us discuss some of the definitions and properties of the measure of noncom-
pactness.

Let us denote by MZ the family of nonempty bounded subsets of Z such that for
Q ∈MZ, coQ is the closed convex hull of Q.

Definition 10. (See [24].) Let Y+ be a positive cone of an ordered Banach space (Y,6).
A mapping ν defined on MZ with values in Y+ is called a measure of noncompactness
on Z iff ν(coQ) = ν(Q) for all Q ∈MZ.

The measure of noncompactness ν is said to be:

(i) regular iff ν(Q) = 0⇔ Q is relatively compact in Z for all Q ∈MZ;
(ii) monotone iff (Q1 ⊆ Q2)⇒ ν(Q1) 6 ν(Q2) for all Q1, Q2 ∈MZ;

(iii) nonsingular if ν({a} ∪Q) = ν(Q) for each a ∈ Z, Q ∈MZ.

Another important measure of noncompactness is the Hausdorff (or ball) measure of
noncompactness for Q defined as follows:

χ(Q) = inf
{
ε > 0: Q has a finite ε-net in Z

}
.

Banaś and Goebel [3] have presented some basic properties of the measure of non-
compactness χ. For Q,Q1, Q2 ∈MZ, we have:

(A1) χ(Q1 +Q2) 6 χ(Q1) + χ(Q2);
(A2) χ(Q1 ∪Q2) 6 max{χ(Q1), χ(Q2)};
(A3) χ(λQ) 6 |λ|χ(Q) for any λ ∈ R;
(A4) If the function L : D(L) ⊆ Z → W is Lipschitz continuous with constant k,

then χW(LQ) 6 kχ(Q) for any bounded subset Q ⊆ D(L), where W is
a Banach space.

Lemma 5. (See [3].) If S ⊂ C(I,Z) is bounded and equicontinuous, then χ(S) is
continuous for s ∈ I, and

χ(S) = sup
{
χ(S(s)), s ∈ I

}
, where S(s) =

{
z(s), z ∈ S

}
⊆ Z.

Theorem 1. (See [3, 28].) Let {ak}∞k=1 be a sequence of Bochner integrable functions
from I into Z with ‖ak‖ 6 µ(s) for all s ∈ I and for every k > 1, where µ ∈ L1(I,R).
Then the function η(r) = ν({ak(r), k > 1}) ∈ L1(I,R) and satisfies ν({

∫ s
0
η(r) dr,

k > 1}) 6 2
∫ s
0
η(r) dr.

Lemma 6. (See [22].) Let C be convex and closed subset of a Banach space Z and 0 ∈ C.
Suppose that T : C → Z is continuous function and satisfies Mönch’s condition (D ⊆ C
is countable, D ⊆ co({0} ∪ T (D))⇔ D is compact). Then T has a fixed point in C.
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3 Controllability

We assume the following hypotheses:

(A1) For all bounded subsets C ⊆ Z and x ∈ C,∥∥T (ψ(s2)− ψ(0)
)δ
w
)
x− T

(
ψ(s1)− ψ(0)

)δ
w
)
x
∥∥→ 0 as s2 → s1

for each fixed w ∈ (0,∞).
(A2) The mapping g : I×Bh → Z satisfies:

(i) g(·, ~) is measurable for all ~ ∈ Bh, g(s, ·) is continuous for a.e. s ∈ I,
and Bh, g(s, ·) : [0, d]→ Z is strongly measurable;

(ii) there exists a constant δ1 ∈ (0, δ), m1 ∈ L1/δ1(I,R+), and a nondecreas-
ing continuous function Θ : R+ → R+ such that, for all (s, ~) ∈ I×Bh,
‖g(s, ~)‖ 6 m1(s)Θ(‖~‖), where Θ satisfies lim infk→∞Θ(k)/k = 0.

(A3) There exist δ2 ∈ (0, δ) and m2 ∈ L1/δ2(I,R+) such that, for any bounded
subset B1 ⊂ Bh,

χ(g(s,B1)) 6 m2(s)
[

sup
−∞<ω60

χ
(
B1(ω)

)]
for a.e. s ∈ I.

(A4) Let the bounded operator K : L2(I,U)→ Z defined by

Ku =

d∫
0

(
ψ(d)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)Bu(r)ψ′(r) dr,

and the following hold:

(i) K having an inverse K−1 takes values in L2(I,U)/ kerK, and there exist the
constants θ1, θ2 > 0 such that ‖B‖ 6 θ1 and ‖K−1‖ 6 θ2;

(ii) for δ3 ∈ (0, δ) and for any bounded subset F ⊂ Z, there exists m3 ∈
L1/δ3(I,R+) such that χ((K−1F)(s)) 6 m3(s)χ(F).

For our convenience, let us take

R1 = τ1‖m1‖L1/δ1 (I,R+), R2 = τ2‖m2‖L1/δ2 (I,R+), R3 = τ3‖m3‖L1/δ3 (I,R+),

τi =

[(
1− δi
δ − δi

)(
ψ(d)− ψ(0)

)(δ−δi)/(1−δi)]1−δi
, i = 1, 2, 3, κ =

δ − 1

1− δ′
,

R∗ =
(ψ(d)− ψ(0))(1+κ)(1−δ

′)

(1 + κ)1−δ′
, δ′ ∈ (0, δ).

Theorem 2. Under hypotheses (A1)–(A3), system (1)–(2) is controllable on [0, d] if

S∗ =
2MR2(ψ(d)− ψ(0))1−σ

Γ(δ)

[
1 +

2Mθ1R3

Γ(δ)

]
< 1 for some

1

2
< δ < 1. (4)
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Proof. Using (A4), we define control function ux(s) by

ux(s) = K−1
[
x1 − Sδ,γ;ψ(s, r)~(0)

−
d∫

0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)g(r, xr)ψ
′(r) dr

]
(s).

By using this control function, we show that the operatorH : B′h → B′h defined by

Hx(s) =


~(s), s ∈ (−∞, 0],

Sδ,γ;ψ(s, 0)~(0) +
∫ s
0

(ψ(s)− ψ(r))δ−1Qδ,γ;ψ(s, r)g(r, xr)ψ
′(r) dr

+
∫ s
0

(ψ(s)− ψ(r))δ−1Qδ,γ;ψ(s, r)Bux(r)ψ′(r) dr, s ∈ I,

possesses a fixed point, which is a mild solution of system (1)–(2). It is easy to see that
Hx(d) = x1. So, system (1)–(2) is controllable on [0, d].

For ~ ∈ Bh, we define ĥ by

ĥ(s) =

{
~(s), s ∈ (−∞, 0],

Sδ,γ;ψ(s, r)~(0), s ∈ I,

then ĥ ∈ B′h. Let x(s) = [z(s) + ĥ(s)], −∞ < s 6 d. It is easy to see that x satisfies
Eq. (3) if and only if z satisfies z0 = 0 and

z(s) =

s∫
0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)g
(
r, [zr + ĥr]

)
ψ′(r) dr

+

s∫
0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)Buz(r)ψ
′(r) dr,

where

uz(s) = K−1
[
x1 − Sδ,γ;ψ(s, r)~(0)

−
d∫

0

(
ψ(d)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)g
(
r, [zr + ĥr]

)
ψ′(r) dr

]
(s).

Let B′′h = {z ∈ B′h: z0 = 0 ∈ Bh}. For any z ∈ B′′h,

‖z‖d = ‖z0‖Bh
+ sup

{∥∥z(r)∥∥, 0 6 r 6 d
}

= sup
{∥∥z(r)∥∥, 0 6 r 6 d

}
.
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Hence, (B′′h, ‖·‖d) is a Banach space. Now, r0 > 0, choose Br0 = {z ∈ T′′h: ‖z‖d 6 r0},
then Br0 ⊆ B′′h is uniformly bounded, and for z ∈ Br0 , from Lemma 1

‖zs + ĥs‖ 6 ‖zs‖Bh
+ ‖ĥs‖Bh

6 k

(
r0 +

M |h|
Γ(δ(1− γ) + γ)

)
+ ‖h‖Bh

= r′0.

Consider an operator H̃ : B′′h → B′′h defined by

H̃z(s) =


0, s ∈ (−∞, 0],∫ s
0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)g(r, [zr + ĥr])ψ
′(r) dr

+
∫ s
0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)Buz(r)ψ
′(r) dr, s ∈ I.

Clearly, the existence of a fixed point of the operator H is equivalent to H̃ has one. Now,
we show that H̃ has a fixed point. The following steps are used to obtain the proof.

Step 1. There exists r0 > 0 such that H̃(Br0) ⊆ Br0 .
If this is not true, then for each r0 > 0, there exists zr0 ∈ Br0 . But H̃(zr0) /∈ Br0 ,

i.e., ‖H̃(zr0)(s)‖ > r0 for all s ∈ I.
Choose r0 > 0, and let {Br0 = x ∈ Z: ‖x‖σ,ψ 6 r0}. It is easy to see that Br0 is

a closed, bounded, and convex set of Z. Therefore,∥∥H̃(xr0)∥∥
σ,ψ

= sup
{(
ψ(s)− ψ(0)

)1−σ∥∥H̃(xr0)(s)∥∥, s ∈ I:
∥∥H̃(xr0)(s)∥∥ > r0

}
.

Then by hypotheses (A2)(ii), (A3), (A4), Lemma 4, and Hölder’s inequality,

r0 <
(
ψ(d)− ψ(0)

)1−σ∥∥(H̃zr0)(s)
∥∥,

6
(
ψ(d)− ψ(0)

)1−σ∥∥∥∥∥
s∫

0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)g
(
r, [zr + ĥr]

)
ψ′(r) dr

∥∥∥∥∥
+
(
ψ(d)− ψ(0)

)1−σ∥∥∥∥∥
s∫

0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)Buz(r)ψ
′(r) dr

∥∥∥∥∥
6
M(ψ(d)− ψ(0))1−σ

Γ(δ)

∥∥∥∥∥
s∫

0

(
ψ(s)− ψ(r)

)δ−1
g
(
r, [zr + ĥr]

)
ψ′(r) dr

∥∥∥∥∥
+
M(ψ(d)− ψ(0))1−σ

Γ(δ)

∥∥∥∥∥
s∫

0

(
ψ(s)− ψ(r)

)δ−1
Buz(r)ψ

′(r) dr

∥∥∥∥∥
6
M(ψ(d)− ψ(0))1−σ

Γ(δ)

s∫
0

(
ψ(s)− ψ(r)

)δ−1
m1(r)Θ(r′0)ψ′(r) dr
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+
M(ψ(d)− ψ(0))1−σ

Γ(δ)

×
s∫

0

(
ψ(s)− ψ(r)

)δ−1∥∥∥∥∥BK−1
[
x(d)− Sδ,γ;ψ(s, r)h(0)

−
d∫

0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)g
(
r, [zr + ĥr]

)
ψ′(r) dr

]
(r)

∥∥∥∥∥ψ′(r) dr

6
M(ψ(d)− ψ(0))1−σ

Γ(δ)

s∫
0

(
ψ(s)− ψ(r)

)δ−1
m1(r)Θ(r′0)ψ′(r) dr

+
Mθ1θ2(ψ(d)− ψ(0))1−σ

Γ(δ)

×
s∫

0

(
ψ(s)− ψ(r)

)δ−1[∥∥x1∥∥+
M(ψ(d)− ψ(0))1−σ

Γ(γ(1− δ) + δ)

∥∥h(0)
∥∥

+
M

Γ(δ)

d∫
0

(
ψ(d)− ψ(r)

)δ−1
m1(r)Θ(r′0)ψ′(r) dr

]
ψ′(r) dr

6
MR1(ψ(d)− ψ(0))1−σ

Γ(δ)
Θ(r′0) +

Mθ1θ2(ψ(d)− ψ(0))1−σ

Γ(δ)

×R∗
[∥∥x1∥∥+

M(ψ(d)− ψ(0))1−σ

Γ(γ(1− δ) + δ)

∥∥h(0)
∥∥+

MR1

Γ(δ)
Θ(r′0)

]
. (5)

Now, dividing both sides of Eq. (5) by r0 and taking the limit r0 →∞, we have

1 6
MR1(ψ(d)− ψ(0))1−σ

Γ(δ)
Θ(q′)

(
1 +

Mθ1θ2
Γ(δ)

R∗
)
.

Then by (A2), we get 160, which is a contradiction. Hence, for r0>0, H̃(Br0)⊆Br0 .
Step 2. H̃ is continuous on Br0 .
For any zk, z ∈ Br0 , k = 0, 1, 2, . . . , with limk→∞ zk = z, then limk→∞ zk(s) =

z(s) and limk→∞(ψ(s)− ψ(0))1−σzk(s) = (ψ(s)− ψ(0))1−σz(s).
Let x(s) = (ψ(s)−ψ(0))1−σ[z(s)+ĥ(s)]. Then {zk+ĥ} ⊂ Br0 with zk+ĥ→ z+ĥ

in Br0 as k →∞, and we have

g
(
s, xk(s)

)
= g
(
s,
(
ψ(s)− ψ(0)

)1−σ[
zk(s) + ĥ(s)

])
→ g

(
s,
(
ψ(s)− ψ(0)

)1−σ[
z(s) + ĥ(s)

])
= g
(
s, x(s)

)
as k →∞,

where, g(r, (ψ(r)−ψ(0))1−σ[z
(k)
r +ĥr]) = Gk(r) and g(r, (ψ(r)−ψ(0))1−σ[zr+ĥr]) =

G(r).
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Then, using the (A2)(i), (ii) and Lebesgue’s dominated convergence theorem, we have

s∫
0

(
ψ(s)− ψ(r)

)1−δ∥∥Gk(r)− G(r)
∥∥ψ′(r) dr → 0 as k →∞, s ∈ I. (6)

Now by (A2),∥∥H̃zk− H̃z∥∥
σ,ψ

6
(
ψ(d)−ψ(0)

)1−σ
×

∥∥∥∥∥
s∫

0

(
ψ(s)−ψ(r)

)δ−1Qδ,γ;ψ(s, r)
[
g
(
r,
[
zkr +ĥr

])
− g
(
r, [zr+ĥr

])]
ψ′(r) dr

∥∥∥∥∥
+
(
ψ(s)−ψ(0)

)1−σ‖B‖
×

∥∥∥∥∥
s∫

0

(
ψ(s)−ψ(r)

)δ−1Qδ,γ;ψ(s, r)
[
uzk(r)− uz(r)

]
ψ′(r) dr

∥∥∥∥∥
6
M(ψ(s)−ψ(0))1−σ

Γ(δ)

×

∥∥∥∥∥
s∫

0

(
ψ(s)−ψ(r)

)δ−1[
g
(
r,
[
zkr +ĥr

])
− g
(
r, [zr+ĥr]

)]
ψ′(r) dr

∥∥∥∥∥
+
M(ψ(s)−ψ(0))1−σθ1

Γ(δ)

∥∥∥∥∥
s∫

0

(
ψ(s)−ψ(r)

)δ−1[
uzk(r)−uz(r)

]
ψ′(r) dr

∥∥∥∥∥
6
M(ψ(s)−ψ(0))1−σ

Γ(δ)

s∫
0

(
ψ(s)−ψ(r)

)δ−1[Gk(r)−G(r)
]
ψ′(r) dr

+
M2(ψ(s)−ψ(0))1−σθ1θ2

Γ(δ)2

×
s∫

0

(
ψ(s)−ψ(r)

)δ−1( d∫
0

(ψ(d)−ψ(r))δ−1
[
Gk(r)−G(r)

]
ψ′(r) dr

)
ψ′(r) dr. (7)

Observing (6)–(7), we have ∥∥H̃zk − H̃z∥∥→ 0 as k →∞.

Hence, H̃ is continuous on Br0 .
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Step 3. H̃(Br0) is equicontinuous on I.
Let w ∈ H̃(Br0). Then there is z ∈ Br0 such that

w(s) = Sδ,γ;ψ(s, 0)~(0) +

s∫
0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)G(r)ψ′(r) dr

+

s∫
0

(
ψ(s)− ψ(r)

)δ−1Qδ,γ;ψ(s, r)Buz(r)ψ
′(r) dr.

Let 0 < ε < s and 0 6 s1 < s2 6 d. Now,∥∥w(s2)−w(s1)
∥∥
σ,ψ

=

∥∥∥∥∥(ψ(s2)− ψ(0)
)1−σ s2∫

0

(
ψ(s2)−ψ(r)

)δ−1Qδ,γ;ψ(s2, r)
[
G(r)+Buz(r)

]
ψ′(r) dr

−
(
ψ(s1)−ψ(0)

)1−σ s1∫
0

(
ψ(s1)−ψ(r)

)δ−1Qδ,γ;ψ(s1, r)
[
G(r)+Buz(r)

]
ψ′(r) dr

∥∥∥∥∥
6

∥∥∥∥∥(ψ(s2)−ψ(0)
)1−σ s2∫

s1

(
ψ(s2)−ψ(r)

)δ−1Qδ,γ;ψ(s2, r)
[
G(r)+Buz(r)

]
ψ′(r) dr

∥∥∥∥∥
+

∥∥∥∥∥(ψ(s2)−ψ(0)
)1−σ s1∫

s1−ε

(
ψ(s2)−ψ(r)

)δ−1
×
[
Qδ,γ;ψ(s2, r)−Qδ,γ;ψ(s1, r)

][
G(r)+Buz(r)

]
ψ′(r) dr

∥∥∥∥∥
+

∥∥∥∥∥(ψ(s2)−ψ(0)
)1−σ s1∫

s1−ε

[(
ψ(s2)−ψ(r)

)δ−1 − (ψ(s1)−ψ(r)
)δ−1]

×Qδ,γ;ψ(s1, r)
[
G(r)+Buz(r)

]
ψ′(r) dr

∥∥∥∥∥
+

∥∥∥∥∥(ψ(s2)−ψ(0)
)1−σs1−ε∫

0

(
ψ(s2)−ψ(r)

)δ−1[Qδ,γ;ψ(s2, r)−Qδ,γ;ψ(s1, r)
]

×
[
G(r)+Buz(r)

]
ψ′(r) dr

∥∥∥∥∥
+

∥∥∥∥∥(ψ(s2)−ψ(0)
)1−σs1−ε∫

0

[(
ψ(s2)−ψ(r)

)δ−1 − (ψ(s1)−ψ(r)
)δ−1]

×Qδ,γ;ψ(s1, r)
[
G(r)+Buz(r)

]
ψ′(r) dr

∥∥∥∥∥.
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Using the Lebesgue integral dominance convergence theorem, for ε sufficiently small,
‖w(s2)− w(s1)‖σ,ψ → 0 as s2 → s1.

Hence, H̃(Br0) is equicontinuous on I.

Step 4. The Mönch’s condition holds.
Let z0(s) + ĥ(s) = (ψ(s)−ψ(0))1−σSδ,γ;ψ(s, 0)ĥ0 for all s ∈ I and zn+1 + ĥ(s) =

H̃[wn + ĥ(s)], n = 0, 1, 2, . . . .
Let P ⊆ Br0 be countable and P ⊆ conv({0} ∪ H̃(P)). We show that χ(P) = 0.

Suppose P = {zn + ĥ}∞n=1. Now, we have to show that H̃(P)(s) is relatively compact
in Z for all s ∈ I.

By using Theorem 1, we have

χ(P(s)) = χ
({
zn + ĥ

}∞
n=0

)
= χ

({
z0 + ĥ

}
∪
{
zn + ĥ

}∞
n=1

)
= χ

({
zn(s) + ĥ(s)

}∞
n=1

)
and

χ
({
H̃zn(s)

}∞
n=1

)
= χ

({(
ψ(s)− ψ(0)

)1−σ
×

s∫
0

(
ψ(s)− ψ(r)

)1−δQδ,γ;ψ(s, r)
[
Gn(r) +Buzn(r)

]
ψ′(r) dr

}∞
n=1

)
6 J1 + J2,

where

J1 = χ

({(
ψ(s)− ψ(0)

)1−σ s∫
0

(
ψ(s)− ψ(r)

)1−δQδ,γ;ψ(s, r)Gn(r)

})
,

J2 = χ

({(
ψ(s)− ψ(0)

)1−σ s∫
0

(
ψ(s)− ψ(r)

)1−δQδ,γ;ψ(s, r)Buzn(r)

})
.

Now, again by using by Theorem 1, (A3), and (A4),

J1 = χ

({(
ψ(s)− ψ(0)

)1−σ s∫
0

(
ψ(s)− ψ(r)

)1−δQδ,γ;ψ(s, r)Gn(r)

})

6
2M(ψ(d)− ψ(0))1−σ

Γ(δ)

s∫
0

(
ψ(s)− ψ(r)

)δ−1
χ
({
Gn(r)

}∞
n=1

)
ψ′(r) dr

6
2M(ψ(d)− ψ(0))1−σ

Γ(δ)

s∫
0

(
ψ(s)− ψ(r)

)δ−1
χ
({
g
(
r, [znr + ĥr]

)}∞
n=1

)
ψ′(r) dr
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6
2M(ψ(d)− ψ(0))1−σ

Γ(δ)

×
s∫

0

(
ψ(s)− ψ(r)

)δ−1
m2(r) sup

−∞<θ60
χ
({[

zn(r+θ) + ĥ(r+θ)
]}∞
n=1

)
ψ′(r) dr

6
2M(ψ(d)− ψ(0))1−σ

Γ(δ)

s∫
0

(
ψ(s)− ψ(r)

)δ−1
m2(r) sup

0<ω6r
χ
(
P(ω)

)
ψ′(r) dr,

J2 = χ

({
(ψ(s)− ψ(0))1−σ

s∫
0

(
ψ(s)− ψ(r)

)1−δQδ,γ;ψ(s, r)Buzn(r)

})

6
2Mθ1(ψ(d)− ψ(0))1−σ

Γ(δ)

s∫
0

(
ψ(s)− ψ(r)

)δ−1
χ
({
uzn(r)

}∞
n=1

)
ψ′(r) dr

6
2Mθ1(ψ(d)− ψ(0))1−σ

Γ(δ)

×
s∫

0

(
ψ(s)− ψ(r)

)δ−1
×

[
2M

Γ(δ)

d∫
0

(
ψ(d)− ψ(r)

)δ−1
χ
({
g
(
r, [znr + ĥr]

)}∞
n=1

)
ψ′(r) dr

]
ψ′(r) dr

6
4M2θ1(ψ(d)− ψ(0))1−σ

(Γ(δ))2

×
s∫

0

(
ψ(s)− ψ(r)

)δ−1
m3(r)

×

[( d∫
0

(
ψ(d)− ψ(r)

)δ−1
m2(r)

)
sup

0<ω6r
χ
(
P(ω)

)
ψ′(r) dr

]
ψ′(r) dr,

J1 + J2 =

[
2MR2(ψ(d)− ψ(0))1−σ

Γ(δ)
+

4M2R2R3θ1(ψ(d)− ψ(0))1−σ

(Γ(δ))2

]
× sup

0<ω6r
χ
(
P(ω)

)
6

2MR2(ψ(d)− ψ(0))1−σ

Γ(δ)

[
1 +

2MR3θ1
Γ(δ)

]
sup

0<ω6r
χ
(
P(ω)

)
.

Hence, by Lemma 5,

χ
(
H̃(P)

)
6 S∗χ(P),
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where S∗ is defined in (4). Thus, from Mönch’s condition we have

χ(P) 6 χ
(
conv

(
{0} ∪ H̃(P)

))
= χ

(
H̃(P)

)
6 S∗χ(P),

which implies that χ(P) = 0. Hence, P is relatively compact.
Hence, using Lemma 6, H̃ has a fixed point z in Br0 . Therefore, x = z + ĥ is a fixed

point of operator H, which is the mild solution of system (1)–(2) satisfying x(d) = x1.
Thus, system (1)–(2) is controllable on I. Hence, the proof is complete.

4 An example

Let us take the following ψ-Hilfer fractional differential control system:

D
3/4,γ;s
0+ x(s, z) =

∂2

∂z2
x(s, z) +Kϕ(s, z) +

e−s

4
e−x(s,z), (8)

I
(1−γ)/4;s
0+ x(s, z)

∣∣
s=0

= x0(z), z ∈ [0, π], (9)

x(s, 0) = x(s, π) = 0, s ∈ (0, 1], (10)

x(0, z) = ~(s, z), z ∈ [0, π], (11)

where D
3/4,γ;s
0+ is ψ-Hilfer fractional derivative operator, I

(1−γ)/4;s
0+ is left-sided

ψ-Riemann–Liouville fractional integration operator, ~ ∈ Bh, Kϕ(s, z) : I× [0, π]→ R
is continuous, δ = 3/4, and ψ(s) = s.

Let Z = U = L2[0, π] with the norm ‖·‖L2 , and the operator A : D(A) ⊂ Z → Z is
defined by

Ax =
∂2

∂z2
x(s, z), x ∈ D(A),

and
D(A) =

{
x ∈ Z: x′′ ∈ Z, x(s, 0) = x(s, π) = 0

}
.

Here A is the infinitesimal generator of analytic semigroup {T (s)}s>0 on Z and is given
by T (s)w(r) = w(s + r) for w ∈ Z, T (s) is not a compact semigroup on Z with
χ(T (s)D) 6 χ(D), and there exists M > 1 such that sups∈(0,1] ‖T (s)‖ 6 M . Also,
s → w(s3/4θ + r)x is equicontinuous, s > 0, and θ ∈ (0,∞). Hence, it is easy to see
that T satisfies asssumption (A1).

Define

D
3/4,γ;s
0+ x(s)(z) =

∂3/4

∂r3/4
x(s, z), x(s)(z) = x(s, z).

Now, we define the control operator B : Z→ Z by

(Bu)(s)(z) = Kϕ(s, z), z ∈ [0, π].
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For z ∈ (0, π), K is given by

Ku(z) =

1∫
0

(1− s)−1/4Qδ,γ;ψ(s, 1)wϕ(s, z) ds,

where

Q 3
4 ,γ;s

(s)w(r) =
3

4

∞∫
0

θφ3/4(θ)w
(
s3/4θ + r

)
dθ

and

φ3/4(θ) =
4

3
θ−1−4/3ρ3/4(θ−3/4),

ρ3/4(θ) =
1

π

∞∑
k=1

(−1)k−1θ−3k/4−1
Γ( 3

4k + 1)

k!
sin

(
3

4
kπ

)
, θ ∈ (0,∞).

We assume that K has an inverse and satisfies (A4)(i), (ii) with θ1 = 1, m3(s) = e−s/4,
and

g
(
s, x(s, z)

)
=

e−s

4
e−x(s,z).

By this choice of g, A, and B, system (8) can be written as

D
3/4,γ;s
0+ x(s) = Ax(s) + g(s, xs) +Bu(s), s ∈ I = (0, 1],

I
(1−γ)/4;s
0+ x(s, z)

∣∣
s=0

= ~(s), s ∈ (−∞, 0].

Let us define phase space Bh with the norm

‖x‖Bh
=

0∫
−∞

h(s)‖x‖[s,0] ds ∀x ∈ Bh,

where h(s) = e2s for s < 0,
∫ 0

−∞ h(s) ds = 1/2. Hence, ‖x‖Bh
= ‖x‖/2.

Now, g(s, x(s)) = (e−s/4)e−x(s), and we have

∥∥g(s, x(s, z)
)∥∥ 6

e−s

4

∥∥∥∥ 1

x(s)

∥∥∥∥ =
e−s

4

1

2
∥∥x(s)

∥∥
Bh

, x(s) 6= 0,

with m1 = e−s/4 and Θ(‖x(s)‖Bh
) = 1/(2‖x(s)‖Bh

). We get lim infk→∞Θ(k)/k= 0.
Hence, conditions (A2)(i), (ii) are satisfied. Further, for any bounded subset B1 ⊂ Bh,

χ
(
g(s,B1)

)
6

e−s

4
s
[

sup
−∞<ω60

χ
(
B1(ω)

)]
.
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So, m2(s) = e−s/4. Hence, assumption (A3) is satisfied. Let M = 1 and δ1 = δ2 =
δ3 = 1/2, then m1(s) = m2(s) = e−s/4 ∈ L2([0, 1],R+), δi ∈ (0, 3/4), i = 1, 2, 3,
and R1 = R2 = R3 =

√
2/8. Moreover, substituting the values in (4), we have S ≈

0.373 < 1.
Hence, all the conditions of Theorem 2 are satisfied. Therefore, system (8)–(11) is

controllable on I.

5 Conclusion

In this article, we studied the controllability results of a fractional differential system
involving ψ-Hilfer fractional derivative with infinite delay using a noncompactness mea-
sure. Sufficient conditions for controllability results are obtained by using some weakly
compactness criteria, appropriate assumptions, and techniques of semigroup theory, frac-
tional calculus, and Mönch’s fixed point theorem via a measure of noncompactness. This
study of controllability of ψ-Hilfer fractional derivative gives the controllability results for
many other distinct fractional derivatives stated in Table 1. The study on approximation
theorem for controllability problem governed by ψ-Hilfer fractional differential equation
can be useful to future work. Also, our result can be extended to the controllability of
(k, ψ)-Hilfer fractional differential equations with infinite delay via a measure of non-
compactness, which is our future research plan. An example is presented to illustrate the
main result.
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