
Nonlinear Analysis: Modelling and Control, Vol. 29, No. 3, 543–561
https://doi.org/10.15388/namc.2024.29.35028

Press

A simulation function approach for optimization
by approximate solutions with an application
to fractional differential equation

Parvaneh Lo′lo′a , Maryam Shamsb,1 , Stojan Radenovićc,2
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Abstract. In this work, we study the existence and uniqueness of a common best proximity point
for a pair of nonself functions that are not necessarily continuous using the simulation function. In
the following, we state important common best proximity point theorems as results of the main
theorems of this article. This achievement allows us to have an example that covers our main
theorem but does not apply to the Banach contraction principle. Finally, an application of a nonlinear
fractional differential equation to support the obtained conclusions.
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1 Introduction

Let A and B be nonempty subsets of the metric space (X, d). Also, suppose that f :
A → B is nonself mapping. If d(A,B) = inf{d(a, b), a ∈ A, b ∈ B} and d(a, fa) =
d(A,B), then a is called the best proximity point. When a mapping does not have a fixed
point, studying the best proximity point theory is a suitable way to obtain optimal ap-
proximate solutions. Therefore, optimization theory is developed with the theory of the
best proximity points. If the mapping under study is selfmapping, the best proximity point
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is the fixed point. Therefore, the best proximity point theorems also act as a natural
extension of fixed point theorems. Interesting best proximity point theorems with different
control functions and various spaces can be seen in [1,5,7,8,12,14,17,18,21–24,26–31,
33]. On the other hand, Khojasteh et al. introduced the meaning ofZ-contraction by using
a concept of simulation function. Then fixed point consequences involving a Z-contrac-
tion are appointed in [20]. In the following, Karapınar et al. [19] offered the best proximity
point results using the simulation functions. Until now, several papers have been published
in this field; see [6, 9, 10, 15, 16, 25]. In this work, using a contraction function via
simulation function defined by Roldán et al. [32], we prove the existence and uniqueness
of a common best proximity point for a pair of nonself functions that are not necessarily
continuous. We show that important common best proximity point theorems can be stated
as results. This achievement allows us to have one example that covers our main theorem
but does not apply to the Banach contraction principle. In the end, an application of
a nonlinear fractional differential equation to support the obtained conclusions.

2 Preliminaries

Let A and B be two nonempty subsets of a metric space (X, d); the following notions
will be used all over the article:

d(A,B) = inf
{
d(a, b), a ∈ A, b ∈ B

}
,

A0 =
{
a ∈ A: d(a, b) = d(A,B) for some b ∈ B

}
,

B0 =
{
b ∈ B: d(a, b) = d(A,B) for some a ∈ A

}
.

Definition 1. An element a ∈ A is said to be a common best proximity point of the
nonself mappings S, T : A→ B if it satisfies the condition that

d(a, Sa) = d(a, Ta) = d(A,B).

Definition 2. The nonself mappings S, T : A → B are said to commute proximally if
they satisfy the condition that[

d(u, Sx) = d(v, Tx) = d(A,B)
]

implies Sv = Tu.

Definition 3. If A0 6= ∅, then the pair (A,B) is said to have P-property if and only if for
any a1, a2 ∈ A0 and b2, b2 ∈ B0,

d(a1, b1) = d(a2, b2) = d(A,B) implies d(a1, a2) = d(b1, b2).

Khojasteh et al. [20] gave the following definition of simulation function.

Definition 4. Let (X, d) be a metric space. A simulation function is a function ζ :
[0,+∞[×[0,+∞[→ R satisfying the following conditions:

(ζ ′1) ζ(0, 0) = 0;

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


A simulation function approach for optimization by approximate solutions 545

(ζ ′2) ζ(p, q) < q − p for all p, q > 0;
(ζ ′3) {pn} and {qn} are sequences in (0,+∞), and limn→+∞ pn = limn→+∞ qn =

k > 0, then
lim sup
n→+∞

ζ(pn, qn) < 0.

The set of all simulation functions is denoted by Z .
Then they proved the existence and uniqueness of fixed points for a selfmapping

defined in a complete metric space.

Theorem 1. (See [20].) Let (X, d) be a complete metric space, and let f : X → X be
a Z-contraction with respect to ζ, that is,

ζ
(
d(fx, fy), d(x, y)

)
> 0 for all x, y ∈ X.

Then f has a unique fixed point. Moreover, for every x0 ∈ X , the Picard sequence
{fnx0} converges to this fixed point.

In the following, Argoubi et al. [11] point out the verity that condition (ζ ′1) is not said
in the proof of Theorem 1. Also, Roldán et al. [32] revised (ζ ′3) by taking pn < qn.

Therefore, we use the following definition in this article.

Definition 5. Let (X, d) be a metric space. A simulation function is a function ζ :
[0,+∞[×[0,+∞[→ R satisfying the following conditions:

(ζ1) ζ(p, q) < q − p for all p, q > 0;
(ζ2) {pn} and {qn} are sequences in (0,+∞), and limn→+∞ pn = limn→+∞ qn =

k > 0 and pn < qn for all n ∈ N, then

lim sup
n→+∞

ζ(pn, qn) < 0.

Example 1. If ζλ : [0,+∞[×[0,+∞[→ R be the function defined by ζλ(p, q) = λq − p,
where λ ∈]0, 1[. Then ζλ is a simulation function.

Then Roldán et al. [32] extended the definition of Z-contraction with respect to ζ of
Khojasteh et al. [20] for two functions.

Definition 6. Let A and B be two nonempty subsets of a metric space (X, d), and let
S, T : A→ B be nonself mappings. We say that S is a (Zd, T )-contraction if there exists
a simulation function ζ ∈ Z such that

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
> 0 for all x, y ∈ A: Tx 6= Ty. (1)

In the preceding definitions, if T is the identity mapping onX , the notions of (Zd, T )-
contraction reduced to Z-contraction with respect to ζ of Khojasteh et al. [20].

Remark 1.
(i) By axiom (ζ1), it is clear that a simulation function must verify ζ(r, r) < 0 for all

r > 0.
(ii) Furthermore, if S is a (Zd, T )-contraction, then d(Sx, Sy) < d(Tx, Ty) for all

x, y ∈ X such that Tx 6= Ty.
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3 Main result

We begin our study with the following lemmas. In the first lemma, we state sufficient
conditions for the uniqueness of the common best proximity point.

Lemma 1. Let A and B be nonempty subsets of a metric space (X, d). Let also the
nonself mappings S, T : A→ B satisfy the following conditions:

(i) S and T commute proximally;
(ii) pair (A,B) has the P-property;

(iii) S is a (Zd, T )-contraction;
(iv) v is a common best proximity point of S and T .

Then v is unique.

Proof. Since v is a common best proximity point of the mappings S and T , then

d(v, Sv) = d(A,B),

d(v, Tv) = d(A,B).
(2)

Suppose that v′ is another common best proximity point of the mappings S and T so that

d(v′, Sv′) = d(A,B),

d(v′, T v′) = d(A,B).
(3)

As the mapping S and T commute proximally, Sv = Tv and Sv′ = Tv′, therefore

d(Sv, Sv′) = d(Tv, Tv′).

If d(Sv, Sv′) = d(Tv, Tv′) > 0, since S is a (Zd, T )-contraction and by (ζ1) we have

0 6 ζ
(
d(Sv, Sv′), d(Tv, Tv′)

)
< d(Tv, Tv′)− d(Sv, Sv′) = 0,

which is a contradiction. Therefore, d(Sv, Sv′) = d(Tv, Tv′) = 0 or Sv = Sv′ and
Tv = Tv′. Since pair (A,B) has the P-property, then by (2) and (3) we have v = v′.

In the following lemma, we state the sufficient conditions for the existence of the
common best proximity point.

Lemma 2. Let A and B be nonempty subsets of a metric space (X, d), and let A0 be
nonempty. Let also the nonself mappings S, T : A→ B satisfy the following conditions:

(i) S and T commute proximally;
(ii) S(A0) ⊂ B0 (or T (A0) ⊂ B0);

(iii) S is a (Zd, T )-contraction;
(iv) u ∈ A0 is a coincidence point of S and T , or Su = Tu.

Then the functions S and T have at least a common best proximity point.

https://www.journals.vu.lt/nonlinear-analysis
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Proof. Let u ∈ A0 and Su = Tu. Since SA0 is contained in B0 (or T (A0) ⊆ B0), there
exists an element v ∈ A0 such that

d(v, Tu) = d(v, Su) = d(A,B).

Since S and T commute proximally, Tv = Sv. Therefore, d(Su, Sv) = d(Tu, Tv). If
d(Su, Sv) = d(Tu, Tv) > 0, since S is a (Zd, T )-contraction and by (ζ1) we have

0 6 ζ
(
d(Su, Sv), d(Tu, Tv)

)
< d(Tu, Tv)− d(Su, Sv) = 0,

which is a contradiction. Therefore, d(Su, Sv) = d(Tu, Tv) = 0 or Sv = Su and
Tv = Tu.

So, it follows that

d(v, Sv) = d(v, Su) = d(A,B),

d(v, Tv) = d(v, Tu) = d(A,B).

Therefore, v is a common best proximity point of the mappings S and T .

Now, using the above basic lemmas, we can state one of the main results of this article.

Theorem 2. Let A and B be nonempty subsets of a complete metric space (X, d).
Moreover, assume that A0 is nonempty and closed. Let also the nonself mappings S, T :
A→ B satisfy the following conditions:

(i) S and T commute proximally;
(ii) pair (A,B) has the P-property;

(iii) S is a (Zd, T )-contraction;
(iv) SA0 ⊆ TA0 and SA0 ⊆ B0 (or TA0 ⊆ B0);
(v) S and T are continuous.

Then S and T have a unique common best proximity point.

Proof. Let a0 be an element in A0. Since S(A0) ⊆ T (A0), there exists an element a1
in A0 such that Sa0 = Ta1. Proceeding inductively, it can be shown that there exists
a sequence {an} in A0 such that

San−1 = Tan.

Let there exist n0 ∈ N such that San0−1 = San0
. By S({an}) ⊆ B0 (or T ({an}) ⊆ B0)

then there exists u ∈ A0 such that

d(u, Tan0
) = d(u, San0−1) = d(u, San0

) = d(A,B). (4)

Since S and T commute proximally, Su = Tu. Again, since Su ∈ B0 (or Tu ∈ B0),
there exists v ∈ A0 such that

d(v, Tu) = d(v, Su) = d(A,B). (5)
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Let d(u, v) > 0. Because pair (A,B) has the P-property, by (4) and (5) we have

d(Su, San0
) = d(Tu, Tan0

) = d(u, v) > 0.

Since S is a (Zd, T )-contraction, then by (ζ1) we have

0 6 ζ
(
d(Su, San0), d(Tu, Tan0)

)
,

< d(Tu, Tan0)− d(Su, San0) = 0,

which is a contradiction. Therefore, d(u, v) = 0, and by (5) u is a common best proximity
point of S and T . In the case the proof is finalized.

So, we can suppose that San−1 6= San for every n ∈ N. Therefore, d(Tan−1, Tan)
and d(San−1, San) both have positive values for every n ∈ N. In view of the fact that
S(A0) is contained in B0, there exists a sequence {un} in A0 such that

d(un, San) = d(A,B) (6)

for every nonnegative integer n. So, it follows from the choice of {an} that

d(un−1, Tan) = d(un−1, San−1) = d(A,B)

for every positive integer n. Because of this fact the mappings S and T are commuting
proximally

Sun−1 = Tun.

Moreover, (A,B) have P-property, therefore,

d(un−1, un) = d(San−1, San)

d(un−2, un−1) = d(Tan−1, Tan).
(7)

Since S is a (Zd, T )-contraction and by (7) and (ζ1) we have

0 6 ζ
(
d(San−1, San), d(Tan−1, Tan)

)
< d(Tan−1, Tan)− (d(San−1, San)

= d(un−2, un−1)− d(un−1, un)

for every positive integer n, then

d(un−1, un) < d(un−2, un−1).

This implies that the sequence d(un−1, un) is decreasing, and so there is a d > 0 such
that d(un−1, un) → d. Suppose that d > 0, using property (ζ2) of simulation function,
with pn = d(San−1, San) and qn = d(Tan−1, Tan), we have

0 6 lim sup ζ
(
d(San−1, San), d(Tan−1, Tan)

)
< 0,

which is a contradiction, and hence d = 0.
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The next step is to show that the sequence {un} is a Cauchy. Assume that {un} is not
Cauchy. Then by Lemma 2.1 of [13], there exists an ε > 0 and two subsequences {unk

}
and {umk

} of {un} such that nk > mk > k, d(unk
, umk

) > ε for all k ∈ N, and

lim
k→+∞

d(unk
, umk

) = lim
k→+∞

d(unk+1, umk+1) = ε. (8)

Then we can assume that d(unk+1, umk+1) > 0 for all k ∈ N. Since pair (A,B) has the
P-property, therefore, by (6) we have for all k ∈ N,

d(unk
, umk

) = d(Tank+1, Tamk+1),

d(unk+1, umk+1) = d(Sank+1, Samk+1).
(9)

By (8) and (9) we have

lim
k→+∞

d(Sank+1, Samk+1) = lim
k→+∞

d(Tank+1, Tamk+1) = ε.

Let pk = d(Sank+1, Samk+1) and qk = d(Tank+1, Tamk+1).
Since d(Sank+1, Samk+1) > 0 and d(Tank+1, Tamk+1) > 0 for all k ∈ N and

pk < qk by Remark 1(ii), then by using property (ζ2) of simulation function we obtain

0 6 lim sup
k→+∞

ζ
(
d(Sank+1, Samk+1), d(Tank+1, Tamk+1)

)
< 0,

which is a contradiction. We conclude that the sequence {un} is Cauchy. Since (X, d)
is a complete metric space and A0 is a closed subset of X , there exists u in A0 such that
limn→+∞ un = u. Because of the continuity of the mappings S and T ,

Tu = lim
n→+∞

Tun = lim
n→+∞

Sun−1 = Su. (10)

Therefore, u is a coincidence point of S and T . Then by Lemmas 1 and 2, S and T have
a unique common best proximity point.

Now, in the following theorem, we replace the continuity condition of f and g with
another condition to get the same result.

Theorem 3. Let A and B be nonempty subsets of a complete metric space (X, d), and
let A0 be nonempty. Let also the nonself mappings S, T : A → B satisfy the following
conditions:

(i) S and T commute proximally;
(ii) pair (A,B) has the P-property;

(iii) S is a (Zd, T )-contraction;
(iv) SA0 ⊆ TA0 and SA0 ⊆ B0 (or TA0 ⊆ B0);
(v) SA0 (or TA0) is closed.

Then S and T have a unique common best proximity point.

Nonlinear Anal. Model. Control, 29(3):543–561, 2024
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Proof. We take the same sequence {an} as in the proof of Theorem 2 and get that
d(Tan−1, Tan) and d(San−1, San) both have positive values for every n ∈ N. Since
S is a (Zd, T )-contraction and by (ζ1) we have

0 6 ζ
(
d(San−1, San), d(Tan−1, Tan)

)
< d(Tan−1, Tan)− d(San−1, San)

= d(Tan−1, Tan)− d(Tan, Tan+1)

for every positive integer n, then

d(Tan, Tan+1) < d(Tan−1, Tan).

This implies that the sequence d(Tan, Tan+1) is decreasing, and so there is a d > 0 such
that d(Tan, Tan+1)→ d. Suppose that d > 0, using property (ζ2) of simulation function,
with pn = d(San−1, San) and qn = d(Tan−1, Tan), we have

0 6 lim sup ζ
(
d(San−1, San), d(Tan−1, Tan)

)
< 0,

which is a contradiction and hence d = 0.
The next step is to show that the sequence {Tan} is a Cauchy. Assume that {Tan}

is not Cauchy. Then by Lemma 2.1 of [13] there exists an ε > 0 and two subsequences
{Tank

} and {Tamk
} of {Tan} such that nk > mk > k and d(Tank

, Tamk
) > ε for all

k ∈ N and

lim
k→+∞

d(Tank
, Tamk

) = lim
k→+∞

d(Tank+1, Tamk+1) = ε.

Then we can assume that d(Tank+1, Tamk+1) > 0 for all k ∈ N. Therefore,

lim
k→+∞

d(Tank
, Tamk

) = lim
k→+∞

d(Sank
, Samk

) = ε.

Let pk = d(Sank
, Samk

) and qk = d(Tank
, Tamk

), then by using the simulation
function property (ζ2) we obtain

0 6 lim sup
k→+∞

ζ
(
d(Sank

, Samk
), d(Tank

, Tamk
)
)
< 0,

which is a contradiction. We conclude that the sequence {Tan} is Cauchy.
Since Tan = San−1 ∈ S(A0) ⊆ T (A0) for all n ∈ N, therefore, {Tan} is included

in S(A0) ⊆ T (A0). Since (T (A0), d) (or (S(A0), d)) is a closed subset of X and (X, d)
is a complete metric space, then there exists v ∈ TA0 such that Tan → v, that is,

lim
n→+∞

d(Tan, v) = 0. (11)

Since San−1 = Tan for all n ∈ N, we also have that

lim
n→+∞

d(San, v) = 0. (12)

Let u ∈ A0 be any point such that Tu = v.

https://www.journals.vu.lt/nonlinear-analysis
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Now, we show that u is a coincidence point of S and T . If not, that is, v = Tu 6= Su,
then we have d(Su, Tu) = γ > 0. Then using (11), there exists m0 ∈ N such that
d(Tan, Tu) < γ for all n > m0. Therefore,

d(Tan, Tu) < γ = d(Su, Tu) for all n > m0.

Then Tan 6= Su for all n > m0, and therefore,

d(San, Su) = d(Tan+1, Su) > 0 for all n > m0. (13)

If there exists m1 ∈ N such that

Tan = Tu for all n > m1,

then Tan = Tan+1 for all n > m1, which contradicts the positiveness of d(Tan, Tan+1)
for all n ∈ N. Therefore, there exists {aβ(n)} ⊆ {an} such that

Taβ(n) 6= Tu for all n ∈ N. (14)

Let m2 ∈ N such that β(m2) > m0, then by (13) and (14) we have

d(Saβ(n), Su) > 0 and d(Taβ(n), Tu) > 0 for all n > m2.

Then by using property (ζ2) of simulation function we obtain

0 6 ζ
(
d(Saβ(n), Su), d(Taβ(n), Tu)

)
< d(Taβ(n), Tu)− d(Saβ(n), Su) for all n > n2.

Letting n→ +∞, by (11) and (12) we obtain

0 6 ζ
(
d(Saβ(n), Su), d(Taβ(n), Tu)

)
< 0,

which is a contradiction. Therefore, u is a coincidence point of S and T .
Finally, using Lemmas 1 and 2, it is proved that u is unique common best proximity

point of S and T .

4 Consequences

In this section, we present some results where Theorems 2 and 3 can be applied. In other
words, we show that the simulation functions can be used for different types of contraction
conditions in an only method.

Corollary 1 [Banach type]. Let A and B be nonempty subsets of a complete metric
space (X, d), and let A0 be nonempty. Moreover, the nonself mappings S, T :A → B
satisfy the following conditions:

(i) S and T commute proximally;
(ii) pair (A,B) has the P-property;

Nonlinear Anal. Model. Control, 29(3):543–561, 2024
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(iii) there exists α ∈ [0, 1) such that d(Sx, Sy) 6 αd(Tx, Ty) for all x, y ∈ X such
that Tx 6= Ty;

(iv) SA0 ⊆ TA0 and SA0 ⊆ B0 (or TA0 ⊆ B0);
(v) S and T are continuous, and A0 is closed or at least one of the sets of SA0 and

TA0 are closed.

Then S and T have a unique common best proximity point.

Proof. The proof follows from Theorem 2 (or 3) by choosing the simulation function as
ζ(p, q) = αq − p for all p, q ∈ [0,+∞).

Corollary 2. Let A and B be nonempty subsets of a complete metric space (X, d), and
let A0 be nonempty. Moreover, χ, ϕ : [0,+∞)→ [0,+∞) be continuous, nondecreasing
functions such that χ−1(0) = ϕ−1(0) = {0} and χ(t) < t 6 ϕ(t) for all t > 0. Let also
the nonself mappings S, T : A→ B satisfy the following conditions:

(i) S and T commute proximally;
(ii) pair (A,B) has the P-property;

(iii) ϕ(d(Sx, Sy)) 6 χ(d(Tx, Ty)) for all x, y ∈ X such that Tx 6= Ty;
(iv) SA0 ⊆ TA0 and SA0 ⊆ B0 (or TA0 ⊆ B0);
(v) S and T are continuous, and A0 is closed or at least one of the sets of SA0 and

TA0 are closed.

Then S and T have a unique common best proximity point.

Proof. The proof follows from Theorem 2 (or 3) by choosing the simulation function as
ζ(p, q) = χ(q)− ϕ(p) for all p, q ∈ [0,+∞).

Corollary 3. LetA andB be nonempty subsets of a complete metric space (X, d), and let
A0 be nonempty. Moreover, ψ : [0,+∞) → [0,+∞) is a lower semicontinuous function
such that ψ−1(0) = {0}. Let also the nonself mappings S, T :A → B satisfy the follow-
ing conditions:

(i) S and T commute proximally;
(ii) pair (A,B) has the P-property;

(iii) d(Sx, Sy) 6 d(Tx, Ty)− ψ(d(Tx, Ty)) for all x, y ∈ X such that Tx 6= Ty;
(iv) SA0 ⊆ TA0 and SA0 ⊆ B0 (or TA0 ⊆ B0);
(v) S and T are continuous, and A0 is closed or at least one of the sets of SA0 and

TA0 are closed.

Then S and T have a unique common best proximity point.

Proof. The proof follows from Theorem 2 (or 3) by choosing the simulation function as
ζ(p, q) = q − ψ(q)− p for all p, q ∈ [0,+∞).

Corollary 4 [Rhoades type]. Let A and B be nonempty subsets of a complete metric
space (X, d), and letA0 be nonempty. Moreover, ψ : [0,+∞)→ [0,+∞) is a continuous

https://www.journals.vu.lt/nonlinear-analysis
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function such that ψ−1(0) = {0}. Let also the nonself mappings S, T : A → B satisfy
the following conditions:

(i) S and T commute proximally;
(ii) pair (A,B) has the P-property;

(iii) d(Sx, Sy) 6 d(Tx, Ty)− ψ(d(Tx, Ty)) for all x, y ∈ X such that Tx 6= Ty;
(iv) SA0 ⊆ TA0 and SA0 ⊆ B0 (or TA0 ⊆ B0);
(v) S and T are continuous, and A0 is closed or at least one of the sets of SA0 and

TA0 are closed.

Then S and T have a unique common best proximity point.

Proof. It is a special instance of the above consequence.

Corollary 5. Let A and B be nonempty subsets of a complete metric space (X, d),
and let A0 be nonempty. Moreover, η : [0,+∞)→ [0, 1) is a function, which satisfies
lim supt→r+ η(t)< 1 for all r > 0. Let also the nonself mappings S, T : A → B satisfy
the following conditions:

(i) S and T commute proximally;
(ii) pair (A,B) has the P-property;

(iii) d(Sx, Sy) 6 d(Tx, Ty)η(d(Tx, Ty)) for all x, y ∈ X such that Tx 6= Ty;
(iv) SA0 ⊆ TA0 and SA0 ⊆ B0 (or TA0 ⊆ B0);
(v) S and T are continuous, and A0 is closed or at least one of the sets of SA0 and

TA0 are closed.

Then S and T have a unique common best proximity point.

Proof. The proof follows from Theorem 2 (or 3) by choosing the simulation function as
ζ(p, q) = qη(q)− p for all p, q ∈ [0,+∞).

Corollary 6. LetA andB be nonempty subsets of a complete metric space (X, d), and let
A0 be nonempty. Moreover, φ : [0,+∞) → [0,+∞) is a function such that

∫ ε
0
φ(u) du

exists and
∫ ε
0
φ(u) du > ε for all ε > 0. Let also the nonself mappings S, T :A → B

satisfy the following conditions:

(i) S and T commute proximally;
(ii) pair (A,B) has the P-property;

(iii)
∫ d(Sx,Sy)
0

φ(u) du 6 d(Tx, Ty) for all x, y ∈ X such that Tx 6= Ty;
(iv) SA0 ⊆ TA0 and SA0 ⊆ B0 (or TA0 ⊆ B0);
(v) S and T are continuous, and A0 is closed or at least one of the sets of SA0 and

TA0 are closed.

Then S and T have a unique common best proximity point.

Proof. The proof follows from Theorem 2 (or 3) by choosing the simulation function as
ζ(p, q) = q −

∫ p
0
φ(u) du for all p, q ∈ [0,+∞).

Nonlinear Anal. Model. Control, 29(3):543–561, 2024

https://doi.org/10.15388/namc.2024.29.35028


554 Parvaneh Lo′lo′ et al.

Corollary 7. Let A and B be nonempty subsets of a complete metric space (X, d), and
let A0 be nonempty. Moreover, h, k : [0,+∞)× [0,+∞)→ (0,+∞) be two continuous
functions with respect to each variable such that h(p, q) > k(p, q) for all p, q > 0. Let
also the nonself mappings S, T : A→ B satisfy the following conditions:

(i) S and T commute proximally;
(ii) pair (A,B) has the P-property;

(iii) for all x, y ∈ X such that Tx 6= Ty,

h(d(Sx, Sy), d(Tx, Ty))

k(d(Sx, Sy), d(Tx, Ty))
d(Sx, Sy) 6 d(Tx, Ty);

(iv) SA0 ⊆ TA0 and SA0 ⊆ B0 (or TA0 ⊆ B0);
(v) S and T are continuous, and A0 is closed or at least one of the sets of SA0 and

TA0 are closed.

Then S and T have a unique common best proximity point.

Proof. The proof follows from Theorem 2 (or 3) by choosing the simulation function as
ζ(p, q) = q − h(p, q)/k(p, q)p for all p, q ∈ [0,+∞).

5 Examples

Example 2. Suppose X = R is equipped with Euclidean metric. Let

A :=
{

(0, a): 0 < a 6 1
}
,

B :=
{

(1, a): 0 < a 6 1
}
.

It is easy to see d(A,B) = 1, A0 = A and B0 = B. We define S, T : A→ B by

S(0, a) = (1, 1), T (0, a) = (1, a).

Assume that
d(u, Sx) = d(v, Tx) = d(A,B) = 1,

we conclude from the above equation u = (0, 1), v = x. Then Sv = Tu = (1, 1), and
therefore, S and T commute proximally. Furthermore,

ζλ
(
d(Sx, Sy), d(Tx, Ty)

)
= λ|y − x| > 0.

Then S is a (Zd, T )-contraction with respect to ζλ. Clearly, S and T are continuous,
S(A0) ⊆ T (A0), S(A0) ⊆ B0, and (A,B) has P-property. Finally, by Theorem 2 we
can conclude that (0, 1) is the unique common best proximity point of S and T .

In the next example, we suppose that ζ(p, q) : [0,+∞)×[0,+∞)→ R with ζ(p, q) =
q − (p+ 4)/(p+ 2)p. Clearly, ζ is a simulation function.
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Example 3. Consider X = {0, 1, 2, 3, . . . }, A = {0, 1, 3, 5, . . . }, and B = {0, 2, 4, 6,
. . . }. Let d : X ×X → [0,+∞) be a metric on X defined by

d(x, y) =

{
x+ y if x 6= y,

0 if x = y.

Clearly, A0 = {0}, B0 = {0}, d(A,B) = 0, and the pair (A,B) has the P-property.
Suppose that S, T : A→ B are defined by

Sx =

{
x− 3 if x ∈ {5, 7, 9, . . . },
0 if x = 0, 1, 3,

Tx =

{
x− 1 if x ∈ {3, 5, 7, . . . },
0 if x = 0, 1.

If d(u, Sx) = d(v, Tx) = d(A,B) = 0, then u = Sx and v = Tx, and therefore,
according to the definitions of S and T , we have u = v = 0. Then Sv = Tu, or S and T
commute proximally.

Now, in the following cases, we show that S is a (Zd, T )-contraction.
Case 1. If x = 0, 1 then we have the following subcases.

(i) If y = 3, then Sx = Sy = Tx = 0 and Ty = 2. Then (1) is satisfied.
(ii) If y ∈ {5, 7, 9, . . . }, then Sx = Tx = 0, Sy = y−3, and Ty = y−1. Therefore,

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
= ζ(y−3, y−1) = y−1−y + 1

y − 1
(y−3) =

4

y − 1
> 0.

Case 2. If x = 3 then, we have the following subcases.

(i) If y = 0, 1, then Sx = Sy = Ty = 0 and Tx = 2. Then (1) is satisfied.
(ii) If y ∈ {5, 7, 9, . . . }, then Sx = 0, Sy = y − 3, Tx = 2, and Ty = y − 1.

Therefore,

ζ(d(Sx, Sy), d(Tx, Ty)) = ζ(y−3, y+1) = y+1−y + 1

y − 1
(y−3) =

2y + 2

y − 1
> 0.

Case 3. If x ∈ {5, 7, 9, . . . }, then we have the following subcases.

(i) If y = 0, 1, then Sx = x − 3, Sy = Ty = 0, and Tx = x − 1. Then, in this
subcase, similar to subcase 1(ii), (1) is satisfied.

(ii) If y = 3, then Sx = x − 3, Sy = 0, Tx = x − 1, and Ty = 2. Then, in this
subcase, similar to subcase 2(ii), (1) is satisfied.

(iii) If y ∈ {5, 7, 9, . . . }, then Sx = x−3, Sy = y−3, Tx = x−1, and Ty = y−1.
Then (

d(Sx, Sy), d(Tx, Ty)
)

= ζ(x+ y − 6, x+ y − 2)

= x+ y − 2− x+ y − 2

x+ y − 4
(x+ y − 6)

=
2x+ 2y − 4

x+ y − 4
> 0.

Thus (1) is verified.
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It is easy to see that the other hypotheses of Theorem 3 are satisfied. Therefore, 0 is
a unique common best proximity point of S and T .

Remark 2. Using the Archimedean property for all α ∈ (0, 1), we know that there exists
x ∈ {5, 7, 9, . . . } such that (1− α)x > α+ 3, then

(α− 1)x < −(α+ 3) implies α(x+ 1)− (x− 3) < 0.

If ζ(p, q) = αq − p and y = 3 in the previous example, then we have

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
= α(x+ 1)− (x− 3) < 0.

Therefore, the previous example does not apply to the Banach contraction.

6 Application to nonlinear fractional differential equation

In the last decades, two topics have been densely studied: “fixed point theory” and “frac-
tional differential”. Relatively, fractional calculus and fractional differential are very fresh
topics for the researchers, and recently, several notable results in fixed point have been
recorded [2–4].

In this section, we provide an application for our results in the fractional equations,
and we investigate the existence of a solution for Caputo fractional boundary value prob-
lems of order β ∈ (n− 1, n], where n > 2.

Let β ∈ R+, and let M(t) be a continuous function. Then we define the Caputo
derivative of fractional order β as follows:

cDβM = J [β]−βD[β]M,

where [β] is the smallest integer, which is greater than or equal to β, and Jβ is the
Riemann–Liouville integral operator of order β > 0 defined by

JβM(t) =
1

Γ(β)

t∫
0

(t− s)β−1M(s) ds

such that Γ(β) =
∫ +∞
0

tβ−1e−t dt, and J0 is the identity operator.
According to the conditions, we consider the following nonlinear fractional differen-

tial equation: (
cDβu)(t) = h

(
t, u(t)

)
, t ∈ [0, 1], n− 1 < β 6 n, (15)

with

u(0) = u′(0) = · · · = u(n−2)(0) = 0 and u(1) =

ν∫
0

u(s) ds, (16)

where ν ∈ [0, 1] and h : [0, 1]× R→ R.
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Now, we discuss the application of common techniques to the solution of boundary
value problem (BVP) (15)–(16).

We define the operator equation S : C[0, 1]→ C[0, 1] as follows:

S(x)(t) =
ntn−1

(n− νn)Γ(β)

ν∫
0

s∫
0

(s− θ)β−1h
(
θ, x(θ)

)
dθ ds

− ntn−1

(n− νn)Γ(β)

1∫
0

(1− s)β−1h
(
s, x(s)

)
ds

+
1

Γ(β)

t∫
0

(t− s)β−1h
(
s, x(s)

)
ds.

Meanwhile, the metric space (C[0, 1], ‖·‖) is endowed with the metric d defined by

d(x, y) = ‖x− y‖∞ = sup
{∣∣x(t)− y(t)

∣∣: t ∈ [0, 1]
}
,

for all x, y ∈ C[0, 1].

Theorem 4. If for all t ∈ [0, 1] and for all x, y ∈ C[0, 1], there exists K1 with

K1 6
(n− νn)Γ(β + 2)(d(Sx+ Sy) + 2)

(nνβ+1 + (β + 1)(2n− νn))(d(Sx, Sy) + 4)
(17)

such that |f(t, x(t))−f(t, y(t))| 6 K1(|x(t)−y(t)|). Then BVP (15)–(16) has a unique
solution in C[0, 1].

Proof. Using the definition of S and the assumptions of the theorem, we have

d(Sx, Sy) + 4

d(Sx, Sy) + 2

∣∣Sx(t)− Sy(t)
∣∣

=
d(Sx, Sy) + 4

d(Sx, Sy) + 2

∣∣∣∣∣ ntn−1

(n− νn)Γ(β)

ν∫
0

s∫
0

(s− θ)(β−1)
(
h
(
θ, x(θ)

)
− h
(
θ, y(θ)

))
dθ ds

− ntn−1

(n− νn)Γ(β)

1∫
0

(1− s)β−1
(
h
(
s, x(s)

)
− h
(
s, y(s)

))
ds

+
1

Γ(β)

t∫
0

(t− s)β−1
(
h
(
s, x(s)

)
− h
(
s, y(s)

))
ds

∣∣∣∣∣
6

(d(Sx, Sy)+4)ntn−1

(d(Sx, Sy)+2)(n−νn)Γ(β)

ν∫
0

s∫
0

∣∣(s− θ)∣∣(β−1)∣∣h(θ, x(θ)
)
− h
(
θ, y(θ)

)∣∣dθ ds
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+
(d(Sx, Sy) + 4)ntn−1

(d(Sx, Sy) + 2)(n− νn)Γ(β)

1∫
0

|1− s|β−1
∣∣h(s, x(s)

)
− h
(
s, y(s)

)∣∣ ds
+

d(Sx, Sy) + 4

(d(Sx, Sy) + 2)Γ(β)

t∫
0

|t− s|β−1
∣∣h(s, x(s)

)
− h
(
s, y(s)

)∣∣ds
6

(d(Sx, Sy) + 4)nK1t
n−1

(d(Sx, Sy) + 2)(n− νn)Γ(β)

ν∫
0

s∫
0

|s− θ|(β−1)
∣∣x(θ)− y(θ)

∣∣dθ ds

+
(d(Sx, Sy) + 4)nK1t

n−1

(d(Sx, Sy) + 2)(n− νn)Γ(β)

1∫
0

|1− s|β−1
∣∣x(s)− y(s)

∣∣ds
+

(d(Sx, Sy) + 4)K1

(d(Sx, Sy) + 2)Γ(β)

t∫
0

|t− s|β−1
∣∣x(s)− y(s)

∣∣ ds
6

(d(Sx, Sy) + 4)nK1t
n−1

(d(Sx, Sy) + 2)(n− νn)Γ(β)
d(x, y)

ν∫
0

s∫
0

|s− θ|(β−1) dθ ds

+
(d(Sx, Sy) + 4)nK1t

n−1

(d(Sx, Sy) + 2)(n− νn)Γ(β)
d(x, y)

1∫
0

|1− s|β−1 ds

+
(d(Sx, Sy) + 4)K1

(d(Sx, Sy) + 2)Γ(β)
d(x, y)

t∫
0

|t− s|β−1 ds.

Since t ∈ [0, 1], then using a simple calculation and (17), we have

d(Sx, Sy) + 4

d(Sx, Sy) + 2

∣∣Sx(t)− Sy(t)
∣∣

6
(d(Sx, Sy) + 4)K1d(x, y)

d(Sx, Sy) + 2

1

Γ(β + 2)

[
nνβ+1 + (β + 1)(2n− νn)

(n− νn)

]
6 d(x, y)

and
d(Sx, Sy) + 4

d(Sx, Sy) + 2
d(Sx, Sy) 6 d(x, y).

If we consider ζ(p, q) = q − (p + 4)/(p + 2)p and T = I , then all the conditions of
Theorem 3 are satisfied. This means that S has a unique fixed point, that is, BVP (15)–
(16) has a unique solution in C[0, 1].
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7 Conclusion

In this work, we consider a pair of nonlinear operators satisfying a nonlinear contraction
involving a simulation function in a complete metric space. For this pair of operators with
and without continuity, we establish common best proximity point results. Moreover, an
application of our results is given to prove the existence of a solution for a nonlinear
fractional differential equation.
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22. A. Kostić, E. Karapınar, V. Rakočević, Best proximity points and fixed points withR-functions
in the framework of w-distances, Bull. Aust. Math. Soc., 99(3):497–507, 2019, https:
//doi.org/10.1017/S0004972718001193.
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