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Abstract. In this paper, we discuss an epidemic switched system. A susceptible–infected–treated
model is considered. The course of an epidemic is profoundly influenced by the allocation of
resources. If these resources are limited, then we need to devise an optimal distribution strategy.
One significant case to study is when the drug supply is insufficient. We study a control problem
that minimizes the total outbreak size of the epidemic and optimizes the rate of vaccination/isolation
control by minimizing the suitable functional subject to resource constraints. In the end, simulations
are performed for illustrations.
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1 Introduction

Hybrid systems are defined as dynamical systems whose state has two components. The
first one evolves in a continuous set, and the other evolves in a discrete one. The evo-
lution is either through a differential equation, difference equation or according to some
transition logic-based rule. These systems are used to model a variety of physical, bi-
ological, and engineering systems that exhibit this type of behavior, such as aircraft
control systems, automotive systems, and biological systems. For the literature on hybrid
systems, [20, 21] can be referred.

Switched systems are a type of hybrid system that occurs in many real-life situa-
tions and involves switching between many subsystems based on a variety of conditions.
A switched system is made up of a family of continuous-time subsystems and a rule
that governs the switching between them. Switched systems are hybrid systems that im-
itate a wide range of real-world complex systems, including mechanical systems, the
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automobile industry, air traffic control, robotics, integrated circuit design, multimedia,
manufacturing, and chemical processes. Some of the applications of switched systems
in infectious disease modeling are given in the papers [17, 18]. This article focuses on
applying such a system for disease modeling.

One of the most significant issues in the modern period is the impact of infectious
diseases on society. Infectious illness outbreaks result in thousands of deaths and sig-
nificant expenditures to contain the sickness. Efforts such as sanitation, immunization,
and treatment are made to eliminate these diseases. In literature, it can be seen that
there is a long and distinguished history of studying infectious diseases with the help
of mathematical modeling, for example, [13, 14]. As resources are limited, the important
question is to find the optimal way to use the available resources. Optimal control theory
is applied to mathematical models with one or many controls, such as vaccination and
isolation, to eradicate the disease. Some of the earlier works in this area were by Abakuks
in 1972 [1–3]. These papers studied the optimal control of vaccination and isolation
strategies for a simple SIR epidemic model. The cost was taken as proportional to the
number of infectives and isolated individuals. Whereas in 1975, in [26], the continuous
epidemic paths were allowed to run their course until termination, and rates were subject
to control. The restriction on the number of isolated and vaccinated was used by removing
the unrealistic assumption that, at any given time, an arbitrary number of individuals can
be isolated and vaccinated. The observation about [1,26] is that the optimal control should
be applied at the beginning of an outbreak or not at all. After these papers, there has
been much research on the control of epidemics and infectious diseases in the past few
decades, for instance, [12, 24, 28]. A lot of work has been done by epidemiologists to
control COVID-19 as well [6, 8]. In all these works, there was no assumption of the
possibility of shortage or running out of control measures. By adding a switch to an
infectious disease model, we can have different results depending on the model’s specific
context and assumptions. In general, a switch can represent a change in population or
environmental behavior that affects disease spread. Including a switch can help to explain
observed phenomena that a basic model cannot explain, for example, only by adding
a switch can we explain the case of a drug runout.

Resource allocation plays a vital role in the control of an epidemic [7, 10]. Since the
resources are often limited, in preparation for an outbreak, it is essential to determine the
optimal distribution of limited resources to control the epidemic. These resources could
be either a fixed amount of vaccine or other stockpiled drugs [4, 15] or/and the limited
number of facilities and beds for isolation and quarantine [12]. However, in situations
where vaccination supplies run out, and treatment options are limited, it is clear that we
need another optimal distribution model for the control resources available. Our objective
is to answer the following question via a simple modified SIR model: In the case of
limited control resources available during an epidemic and the essential treatment drug
that could run out, what is the best control strategy for minimizing the total epidemic
size? In this situation, we must investigate optimal control for switched systems. The
number of switches, their order, and the switching times are all factors that must be taken
into consideration when solving a general optimal control problem for switched systems.
The optimal control problem of switched systems is studied in [27, 29]. The problem
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of optimal control of a switched system with predefined order is investigated in [23].
Optimal control of switched systems can have wide applications to infectious disease
modeling.

The main motivation for this paper is to minimize the number of infected and optimize
the isolation and vaccination rates. An extension of the SIR model discussed in [9] is
considered. We start with the calculation of the reproduction number and the final-size
relation. Compared to the papers mentioned earlier, this work’s main contribution is that
a switched system is considered for the possibility of the drug running out. The switch
is considered in three different scenarios, i.e., when the drugs are enough for the whole
duration of the epidemic, when drugs run out before the peak in the number of infections,
and when the drugs run out after the peak in the number of infections. The optimal
control theory for switched systems helps in resource allocation even if the drugs run
out, by which we can control the epidemic. It is considered that when the drug treatment
is available, the reproduction number R0 < 1, but when there is drug run out, the
reproduction number increases toR0 > 1, which means the disease cannot be controlled.
By optimal control theory, the epidemic is controlled when interventions like isolation
and vaccination are introduced. We can find research on switched system applications to
disease modeling or to optimal control of a disease in the literature, but not both, although
it can potentially help us to understand diseases and their control.

This paper is organized as follows. Section 2 defines an epidemic model and uses
the next-generation method for reproduction number. Section 3 discusses the final size
relation and how it relates to the drugs available at the beginning of the epidemic. We
introduce a switch and define the controls for the optimal control problem (OCP) in
Section 4. The OCP is solved using the Pontryagin maximum principle in Section 5. Some
numerical simulations are performed in Section 6. Conclusions are drawn in Section 7.

2 Model description and analysis

We consider the following epidemic model:

S′ = −βS(I + δT ),

I ′ = βS(I + δT )− (α+ γ)I,

T ′ = γI − ηT
(1)

with
S(0) > 0, I(0) > 0, T (0) = 0.

We assume that the total population N is constant N = S0 + I0 with γ as the rate of
treatment. The number of cases of disease during the epidemic is N − S∞ with S∞ =
limt→∞ S. If γ > 0, the fraction of the treated is γ/(α + γ). By assuming that each
treatment consists of a drug dose each day during the mean treatment period of 1/η days,
the quantity of drugs required is

U(γ) =
γ

η(α+ γ)
[N − S∞].
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We can write the two extreme cases of drug quantity as follows:

U(0) = 0, U(∞) =
N − S∞

η
> 0.

R0 was defined as the spectral radius of the next-generation matrix by [11]. We
calculate the reproduction number for our model using the same method. Let us denote fi
as the influx on infected humans ith compartment. The rate at which individuals transfer
into the ith compartment by all other means is denoted as v+i , and v−i is the rate at which
individuals transfer out of the compartment i. So a general equation for ith compartment
can be written as

dxi
dx

= fi − vi,

where vi = v+i − v
−
i . If f and v are the column matrix for fi and vi, we get

f =

[
βS(I + δT )

0

]
, v =

[
(α+ γ)I
ηT − γI

]
.

Let F and V be the jacobian matrix of f and v, respectively, calculated at the disease-free
equilibrium, i.e.,

F =
dfj
dxi

, V =
dvj
dxi

.

The disease-free equilibrium for Eq. (1) is E∗ = (S∗, I∗, T ∗) = (N, 0, 0). Thus, we get
F and V as

F =

[
βN βNδ
0 0

]
, V =

[
α+ γ 0
−γ η

]
.

The matrix FV−1 is known as the next-generation matrix,

FV−1 =

[
βN βNδ
0 0

][ 1
(α+γ ) 0
γ

η(α+γ)
1
η

]
=

[ βN
(α+γ) +

βNδγ
η(α+γ)

βNδ
η

0 0

]
.

Hence, the reproduction number is

R0 =
βN

(α+ γ)

(
1 +

δγ

η

)
.

Since R(γ) is a decreasing function of γ if η > δα, this means that the treatment is
beneficial.

If there is no treatment, i.e., γ = 0,

R0
0 = R(γ = 0) =

βN

α
.
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3 The final size relation

The final size relation is given by [5]

ln
S0

S∞
= R0(γ)

(
1− S∞

N

)
.

Similar to the results in [13], we have the following lemma.

Lemma 1. For 0 < S0 < N and a constant K positive, the equation

ln
S0

x
= K

(
1− x

N

)
has a unique solution x < N/K.

Proof. The left side of the equation decreases monotonically from +∞ as x → 0+ to 0
for x = S0. The right side decreases monotonically from R for x = 0 to a positive value
at x = S0. Thus there is a solution S∞, 0 < S∞ < S0. Since the second derivative of the
left side of the equation is positive, while the second derivative of the right side is zero,
this solution is unique. For x = N/K, the left side is ln(S0K/N) < lnK, while the right
side is K − 1. Since lnK < K − 1 for K > 0, it follows that at x = N/K, the left side
of the equation is less than the right side, and this implies that S∞ < N/K, which proves
the lemma.

Implicit differentiation of the final size relation with respect to γ gives(
1

S∞(γ)
− R0(γ)

N

)
S′∞(γ) = −R′0(γ)

[
1− S∞(γ)

N

]
.

The lemma plus the fact thatR′0(γ) < 0 imply that S′∞(γ) > 0.
Let the quantity of drugs available at time t be D(t), and let D0 be the drugs available

at the beginning of the epidemic. If the supply of drugs is limited, then we have the
following cases:

(i) When D0 > U(∞), (1) is applicable for all t.
(ii) When D0 < U(∞), there is a value γ1 such that D0 < U(γ) if γ > γ1. In this

case, if γ1 < γ, model (1) is applicable only until the drug supply runs out, after
which we must take γ = 0.

Therefore, it is necessary to consider the possibility of drug run out separately from
the case in which the model is valid for all t. As the case in which the drug supply is
sufficient has been studied completely, we consider only the case of insufficient drug
supply. If drugs run out at time τ , then at time τ , we must change γ to zero. Thus we
replace the constant γ by the function

γ(t) =

{
γ, 0 6 t < τ,

0, t > τ.
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The number of members entering treatment at time t is γI(t), which means that the
total number of members treated up to time τ is

∫ τ
0
γI(s) ds, and by integrating the third

equation of (1) we see that this is equal to
∫∞
0
ηT (s) ds. Thus,

D(t) = D0 −
t∫

0

γI(s) ds,

and the supply of drugs runs out at time τ if
∫ τ
0
γI(s) ds = D0. In this case, drug

treatment must cease at time τ , and then

D0 =

τ∫
0

γI(s) ds =

∞∫
0

ηT (s) ds.

In practice, we would solve system (1) and calculate the supply of drugs needed for a given
choice of treatment rate γ. Then a choice of D0 less than this amount will guarantee that
the drug supply will run out.

Division and then integration of the first equation of (1) give

ln
S0

S∞(γ)
= β(Î + δT̂ ).

Adding the first two equations of (1) and integrating, we obtain

N − S∞(γ) = (α+ γ)Î = αÎ +

∞∫
0

ηT (t) dt

= αÎ +D0.

Thus,

βÎ =
β

α

[
N − S∞(γ)

]
− β

α
D0.

Then

ln
S0

S∞(γ)
=
β

α
[N − S∞]− βη

α
T̂ + βδT̂

=
β

α
[N − S∞] + β

(
δ − η

α

)
T̂

= R0
0

[
1− S∞(γ)

N

]
+ β

(
δ − η

α

)
D0. (2)

Thus, in the case of drug run out, S∞(γ) is independent of γ. This shows that if the
drug supply is insufficient to last the duration of the epidemic with the chosen treatment
rate, using up the drug supply does not affect the final size of the epidemic. Note, in
addition, that in case 2, while drugs run out for some values of γ, there are larger values
of γ for which the drug supply is sufficient and for which the epidemic size is still smaller.
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If γ is chosen so that there is no run out of the drug supply, model (1) is valid for all t.
Integration of the sum of the first two equations gives

N − S∞(γ) = (α+ γ)Î .

Integration of the third equation of (1) gives

γÎ = ηT̂ ,

and from this combined with (2) we obtain the usual final size relation

ln
S0

S∞(γ)
= R0(γ)

[
1− S∞(γ)

N

]
.

4 Treatment model with a switch

To study the impact of limited drug supply, as discussed in Section 3, we shall now
consider a switch in model (1):

Ṡ = −βS(I + δT ),

İ = βS(I + δT )−
(
α+ γ(t)

)
I,

Ṫ = γ(t)I − ηT

(3)

with γ as a piece-wise continuous function of time defined as

γ(t) =

{
γ, 0 6 t < τ,

0, t > τ.
(4)

If we call x = (S, I, T )T, we get a switched system

ẋ(t) = fs
(
x(t)

)
, s = 1, 2,

where f1 and f2 can be defined as

f1 =

 −βS(I + δT )
βS(I + δT )− (α+ γ)I

γ(t)I − ηT

 , f2 =

 −βS(I + δT )
βS(I + δT )− αI

−ηT

 .
The goal is to study the effect of measures like vaccination and isolation on controlling the
epidemic, which is modeled by a switched system. Now, to mimic the real-life scenario,
if we consider such measures in the model, we will have to consider them as controls. The
affordability of vaccination and isolation depends on the resources and funds of different
countries/states.

In this situation, we have considered two control variables: uv , the rate of vaccination
of the susceptible population, and ui, the rate of isolation of the infected people. Note
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that the two controls must have upper and lower bounds. The lower bound of uv , uvmin
,

represents nonvaccination of the population, and the high bound, uvmax
, means the maxi-

mum capacity of vaccination that can be administrated during an epidemic. Similarly, the
lower and higher bounds of ui, uimin and uimax , respectively, represent the no isolation
capacity, the high possible isolation capacity that can be created during a health crisis.

It is clear that values of the upper bounds depend on the nature of the infectious
disease and the health care capacity of the country where the disease is spreading. Some
countries have more isolation capacities than others [22], and the vaccination supply can
also be facing some shortage as was the case for COVID-19 [25]. In our case, we will
assume that uimin = uvmin = 0, which means that lower bounds of our control are the case
where no vaccination is administrated, and nobody is isolated. The boundedness of the
controls reflects the assumption that there is a maximum rate of isolation and vaccination,
respectively, that can be implied during the epidemic as it directly impacts a country’s
funds. Our objective is to solve our problem by adapting these techniques to our case.

5 Optimal control approach

Consider a switched system with k subsystems

ẋ(t) = fr
(
x(t), u(t)

)
, r = 1, . . . , k.

LetUH andUL be the upper and lower bounds of the control u(t). We aim to minimize

J(x, u, t) =

tf∫
t0

L
(
x(t), u(t), t

)
dx

with bounded controls
UL 6 u(t) 6 UH .

We will construct the Hamiltonian, to solve the above optimal control problem, i.e.,

Hr(x, p, u, t) = L(x, p, u, t) + pTfr(x, u, t),

where pT is the costate vector.
Now using the Pontryagin maximum principle (PMP) to find the optimal control:

ẋ(t) =
∂Hr(x, p, u, t)

∂p
,

ṗ(t) =
∂Hr(x, p, u, t)

∂x
(adjoint equation),

u∗ = UL if ∂Hr(x,p,u,t)
∂u < 0,

UL 6 u∗ 6 UH if ∂Hr(x,p,u,t)
∂u = 0,

u∗ = UH if ∂Hr(x,p,u,t)
∂u > 0

(optimality condition).

Using the above approach, we shall now discuss the optimal control problem for model (3).
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5.1 Optimal control problem (OCP) for switched treatment model

Let us fix uvmax , uimax > 0 and determine the control for model (3)–(4) that minimizes the
total outbreak size over the course of the epidemic and the cost of vaccination/isolation
control by minimizing

J = u2v + u2i +

T∫
t0

I(t) dt (5)

subject to:

• S(t0) = S0, I(t0) = I0, T (t0) = 0,
• (ui(tk), uv(tr)) ∈ [0, uimax

]× [0, uvmax
] for all (k, r) ∈ (N∗)2,

• uv and ui are piecewise continuous functions, where uv : [0,∞] → [0, uvmax
] and

ui : [0,∞]→ [0, uimax ].

Our goal is to conclude the effect of the shortage of drug treatment on the manage-
ment of strategies of control policy. When it is available and efficient, it is clear that
the treatment will reduce the burden of minimizing cost functional (5). But it would
be beneficial to determine a relationship between the run-out time and the number of
resources to allocate that will help to control an epidemic. Notably, we will investigate
the effect of all these two controls in the presence of treatment and its absence. This is
very important for the decision maker to understand what it takes to stop the spread of
infectious diseases. We can write optimal control problem, where the goal is to minimize

J =

T∫
t0

uv
2 + ui

2 + I(t) dt

subject to

ẋ(t) = fs
(
x(t)

)
+ uv(t)g

(
x(t)

)
+ ui(t)h

(
x(t)

)
,

where s = 1, 2, i.e., we have two subsystems on [t0, tf ]. Define the terms x(t), g(x(t)),
h(x(t)) as

ẋ(t) =

 ˙S(t
˙I(t)
˙T (t)

 , g
(
x(t)

)
=

−S(t)0
0

 , h
(
x(t)

)
=

 0
−I(t)
I(t)

 .
Initial conditions are I(t0) = I0, S(t0) = S0, T (t0) = 0. Here the susceptibles, which
are vaccinated are out of the system, and the infected, which are isolated, are still in the
system, which is reflected in g(x) and h(x).

Theorem 1. Suppose u∗v and u∗i minimize the optimal control problem. Let x∗(t) =
(S∗(t), I∗(t), T ∗(t)) denote the optimal solution. Then there exists piecewise C1 vector
function p∗k = (pk1, pk2, pk3) for k = 1, 2 such that:
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(i) Hk(x, ui, uv,pk) > Hk(x
∗, u∗i , u

∗
v,p
∗
k) for both the controls at each time t.

(ii) ṗ∗k = −∇xHk(x∗, u∗i , u∗v,p∗k)
(iii) ∂Hk(x∗, u∗i , u

∗
v,p
∗
k)/∂ui = 0, ∂Hk(x∗, u∗i , u

∗
v,p
∗
k)/∂uv = 0 at ui = u∗i , uv =

u∗v (optimality condition).
Here Hamiltonian Hk(x, uv, ui,pk) is defined as above.

Proof. To begin, we write the subsystems

Subsystem 1

Ṡİ
Ṫ

 =

 −βS(I + δT )
βS(I + δT )− (α+ γ(t))I

γ(t)I − ηT

+ uv

−S0
0

+ ui

 0
−I
I

 ,
Subsystem 2

Ṡİ
Ṫ

 =

 −βS(I + δT )
βS(I + δT )− αI

−ηT

+ uv

−S0
0

+ ui

 0
−I
I

 .
The system switches from subsystem 1 to subsystem 2 at time t = τ . Our aim is to

minimize J(S, I, T, uv, ui, t),

J =

T∫
t0

uv
2 + ui

2 + I(t) dt

with bounded controls

0 6 uv 6 uvmax
, 0 6 ui 6 uimax

.

Hamiltonians for subsystems are

H1 = uv
2 + ui

2 + I(t) +
[
p11 p12 p13

]  −βS(I + δT )− uvS]
βS(I + δT )− (α+ γ(t))I − uiI

γ(t)I − ηT + uiI

 ,
H2 = uv

2 + ui
2 + I(t) +

[
p21 p22 p23

]  −βS(I + δT )− uvS]
βS(I + δT )− αI − uiI

−ηT + uiI

 .
We use the maximum principle to find optimal controls u∗v, u

∗
i . Adjoint equations are

ṗ11(t) = −
∂H1

∂S
, ṗ12(t) = −

∂H1

∂I
, ṗ13(t) = −

∂H1

∂T
,

ṗ21(t) = −
∂H2

∂S
, ṗ22(t) = −

∂H2

∂I
, ṗ23(t) = −

∂H2

∂T
,

and we get

ṗ11 = −
[
p11(−β(I + δT )− uv) + p12β(I + δT )

]
,

ṗ12 = −
[
p11(−βS) + p12(βS −

(
α+ γ(t)

)
− ui) + p13(γ(t) + ui) + 1

]
,

ṗ13 = −
[
p11(−βSδ) + p12βSδ − p13η

]
,
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ṗ21 = −
[
p21
(
−β(I + δT )− uv

)
+ p22β(I + δT )

]
,

ṗ22 = −
[
p21(−βS) + p22(βS − α− ui) + p23ui + 1

]
,

ṗ23 = −
[
p21(−βSδ) + p22βSδ − p13η

]
.

From the optimality condition we get the equations

uv =
p11S

2
, ui =

(p12 − p13)I
2

for t 6 τ,

uv =
p21S

2
, ui =

(p22 − p23)I
2

for t > τ.

6 Numerical simulations

For numerical results, we use the forward-backward sweep algorithm (Algorithm 1).
A general idea of the algorithm is given below. The vector approximation for state and
adjoint are given as x = (x1, . . . , xN+1) and λ = (λ1, . . . , λN+1).

For numerical results, the values of parameters are motivated from [19]. We assume
that α = 0.69, β = 0.002, γ = 0.4, δ = 0.009, η = 0.9. The total population is taken
N=500 units. The basic reproduction number for each case isR0=0.921 andR0

0=1.45.
In Fig. 1, the peak in infections without the effect of control is approximately 190 units

around 100 days. Then we see the effect of both the controls on it (blue line). Figures 3
and 5, respectively, illustrate the effect of controls in the presence of switch before and
after the peak in the number of infections. Moreover, for the numerical example above,
the controls are bounded as they are the rates of vaccination (uv) and isolation (ui), which
are finite. Bounds are taken as

0 < ui < 0.3, 0 < uv < 0.99.

In Fig. 1, we see that controls ui and uv help decrease the number of susceptibles and
infected drastically. The susceptibles decrease and stabilize at around 150 units. Since the
number of infected decreases, it implies that the number of treated will also decrease,
which is reflected in Fig. 1 for the treated (T ) population. From Fig. 2 we see that
vaccination control (uv) is applied to its full potential around 38 days and then decreased,
whereas the isolation control (ui) is applied till 90 days to contain the epidemic.

Algorithm 1. Forward-backward sweep algorithm [16].
Step 1. Start with making an initial estimation for ui and uv over the interval of time.
Step 2. Use the initial condition x(t0), which is denoted by x1, and the values estimated of ui and uv in solving
forward in time for x according to its differential equation in the optimality system.
Step 3. Use λN+1 = λ(t1) = 0, which is the transversality condition along with the values of ui, uv , and x
and solve backward in time for λ according to its differential equation in the optimality system.
Step 4. Update ui and uv by entering the new x and λ values into the characterization of the optimal control.
Step 5. Test the convergence. If the value of each variable in this iteration and the last iteration are almost the
same, use the current values as the solutions. If the values are far apart, go back to Step 2.
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Figure 1. The basic model with and without control.

Figure 2. Controls uv and ui, i.e., vaccinated and isolated.

Figure 3. When the switch is introduced at day 60.
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Figure 4. Controls with the switch.

Figure 5. When the switch is introduced at day 130.

Figure 6. The effect on controls when the switch is introduced after the peak in infection (day 130).
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In Fig. 3, the switch is introduced before the peak in infections on day 60. There is no
treatment available after 60th day. We see the role of isolation and vaccination control in
such conditions. The red (dashed) line shows the situation without control. The number of
infected individuals cannot be controlled, and the number of treated individuals decreases
immediately. The blue line shows the presence of controls and gives us hope that even
though there is no treatment, the epidemic can still be controlled. From Fig. 4 we infer
that both the controls need to be on a complete potential before and after the switch
vaccinated control is at a high level and decreases gradually to zero around 100 days. The
isolation control should be at full capacity till 130th day.

The scenario is entirely different when the switch is introduced after the peak in
infections in Fig. 5 on day 130. The number of infections increases instead of decreasing
in the absence of control (red dashed line). Since the susceptibles have already reduced
significantly, it remains unaffected after the switch in case of control or no control. The
number of treated individuals decreases sharply after the switch when there is no control,
whereas in the presence of controls, the number of infected individuals decreases. As
a result, the number of treated individuals drops, so after the switch, the decline is not
sharp.

Here basic reproduction number is 1.44 when there is no treatment, and the repro-
duction number in the presence of treatment is 0.921. In general, the epidemic can be
controlled ifR0 < 1, but we try to contain the epidemic whenR0 > 1 in the presence of
control. In Figs. 3 and 5, it is visible that if controls are applied appropriately even after
the switch, i.e., when there are drugs, we can still control the epidemic. It is beneficial that
the peak in infections is in the presence of treatment. In other words, we can say that the
switch should be delayed until after the peak in infections. A delayed switch will ensure
that the epidemic is controlled and there is early relaxation in both controls.

7 Conclusion

As the world is facing many waves of different diseases (such as COVID-19), there
is a need to be prepared to contain any epidemic or pandemic. Its main aspect is to
have access to adequate resources that allow the public health authorities to control the
dynamic of the disease spread. However, we witness that access to resources, such as
drug treatment, isolation facilities, and vaccination doses, might be challenging or even
impossible in many countries. Therefore, we need to investigate how running out of
resources can be manageable in the case of a disease outbreak.

In this work, we attempt to study one aspect of this problem by focusing on the
case of run out treatment and how we can control the isolation of the population and
vaccinate them. First, we find the quantity of drugs required as a function of the number
of disease cases during the epidemic. Then we calculate the reproduction number and the
final size relation. We adopt the method given in [9]. Furthermore, we prove a lemma
for the uniqueness of S∞ under the given conditions on R0 and S0. A term for the
quantity of drugs available is defined, i.e., D(t). Now, we calculate the final size relation
in terms of S∞(γ), reproduction number without treatment, and D0. In the next section,
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we considered a susceptible–infected–treated model with two controls, ui and uv , and
proved its existence. Our work only looked at one aspect of resource limitation in the case
of an epidemic (the treatment). However, the problem can also be studied in the case of
running out of vaccination, as is the case in many developing countries during the current
pandemic. The effort should focus mainly on other control approaches that have been
used, such as face masks, testing, and quarantine.
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