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Abstract. A nonlinear elastic medium containing sharp inhomogeneities is considered. The
properties of a modified model of such a medium are investigated. The modification consists in
including in the asymptotic equation of state those terms that were discarded in the previously
considered models. The main purpose of the ongoing research is to analyze the existence, stability,
and dynamic properties of soliton-like solutions within the modified model, as well as to compare
these solutions with analogous solutions obtained in the previously considered models.
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1 Introduction

This paper deals with a family of invariant traveling wave (TW) solutions of a hydro-
dynamic-type model describing elastic media with internal structure. As it is shown in
a number of papers (see e.g. [26–28] and references therein), the balance equations for
mass and momentum in the long wave approximation retain their classical form, and the
information about the presence of structure is manifested in the dynamical equation of
state (DES), relating the pressure field to the field of density. In this study, we consider
a model of a nonlinear elastic medium containing multiple evenly distributed inclusions
(these can be cracks, cavities, or inclusions of a substance that differs significantly from
the carrier material in its physical properties). In such a system, the density field at
neighboring points can differ by orders of magnitude, which makes it appropriate to
replace the functional dependence p(t, x) = F [ρ(t, x)] between pressure and density
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by the dependence of p on some averaged density. The integral relationship between the
pressure and density is used in many papers (see [9, 19] and references therein). It is
shown in [19] that if the nonlocal effects decay rapidly with distance, then the integral
relation can be replaced by an approximate functional–differential relation, which is more
beneficial in studying the system and, at the same time, leads to a qualitatively similar
description. The authors of the work [19] replace the density function under the integral
with the first few terms of its expansion in a Taylor series, after which it is possible to
calculate the integral exactly. However, here the question arises as to how many terms of
the series expansion should be taken into account. This kind of questions typically arises
in models whose derivation includes the methods of asymptotic decomposition (remind,
e.g. the construction of the KdV-type equations from the Fermi–Pasta–Ulam problem [8]
and the study of this issue in more recent works [6,7,17]). In practice, the question of the
number of retained terms of the asymptotic expansion is solved not least for reasons of
convenience since a more “exact” model, as a rule, turns out to be too difficult to study.
The hydrodynamic model of an elastic structured medium proposed in [19] (see also
[20]) includes the minimal number of terms in the asymptotic expansion of the dynamic
equation of state required to take into account nonlocal effects. This model is further
investigated in papers [29, 30] in order to state the existence of soliton-like solutions
(which, as is known, are absent in the classical hydrodynamic-type model), their stability,
and dynamical features. The questions mentioned have found exhaustive solutions in the
papers [29,30] in which criteria for the existence of one-parameter families of soliton-like
solutions are stated, which, depending on the values of the parameters, describe waves of
compression or rarefaction, as well as stability issues. In these works, integrability tests
were also carried out, which gave a negative result. Despite this, the system considered in
[29, 30] possesses stable localized solutions manifesting some features of “pure” solitons
to which we would like to pay special attention.

As in the vast majority of works devoted to the study of asymptotic models with soli-
ton solutions, the question of how the discarded terms affect the existence of solitons and
their stability remains open. But there is some evidence that, with certain modifications
of the equation of state [17], as well as the incorporation of nonlocal effects [12], soliton
structures are preserved, however, these changes radically affect the stability of localized
solutions and their dynamic properties.

This work is devoted to clarifying the persistence of soliton solutions under natural
modification of the model described in [29, 30] and to studying properties of localized
solutions supported by the modified model. The structure of the article is the following.
In Section 2, we pose the statement of the problem and review the previously obtained
results concerning the conditions for the existence of soliton solutions and their stability.
In Section 3, we give the numerical evidence of the existence of the solitary wave solutions
supported by the refined model. In Section 4, we discuss a concept of spectral stability
formulated in terms of the properties of the linearized operator built on the original system
and study its essential spectrum. In Section 5, we construct the Evans function used further
for the numerical study of the discrete (point) spectrum of the operator of linearization.
Section 6 is devoted to the numerical study of the dynamic properties of soliton-like
solutions. In Section 7, we briefly discuss the results obtained.
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2 Statement the problem and review of the previously obtained
results

Thus, we consider nonlinear elastic media containing cavities, microcracks, or soft in-
clusions. Description of nonlinear waves propagation in such media depends in essential
way on the ratio of a characteristic size d of elements of medium structure to a charac-
teristic length λ of the wave pack. If d/λ = O(1), then the basic concepts of continuum
mechanics are not applied, and one should use the description based, e.g. on the element
dynamics methods. If, in turn, d/λ � 1, then one can use the equations of classical
continuum mechanics, completely ignoring the presence of internal structure.

The model considered in this work applies when the ratio d/λ is much less than unity
and the continual approach is valid, however, the physical characteristics of the material
at adjacent points can differ abruptly from each other, and therefore the description that
does not takes into account the internal structure of the medium is incorrect.

As it has been shown in [26], in the long wave approximation the balance equations
for mass and momentum retain their classical form, which in the one-dimensional case
can be written as follows:

ut + px = 0, ρt + ρ2 ux = 0, (1)

where u is the velocity, p is the pressure, ρ is the density, t is the time, x is the mass
(Lagrange) coordinate; subscripts denote partial derivatives with respect to subsequent
variables.

When describing adiabatic processes occurring in an elastic nonlinear homogeneous
medium, the local equation of state p = Aρν+2, ν > −1, is most often used. However,
if the medium is strongly inhomogeneous and the density field can change abruptly from
point to point, it seems appropriate to relate the pressure field to the averaged density field
using the integral equation

p(t, x) =

+∞∫
−∞

K(x, x′) ρν+2(t, x′) dx′, (2)

where K(x, x′) is the kernel of nonlocality, which can be calculated in principle by solv-
ing the dynamical problem of structure elements interaction. However, such calculations
are very difficult, and in practice, one uses as a rule some model kernels describing well
enough main properties of the nonlocal effects and, in particular, the fact that these effects
vanish rapidly as |x− x′| grows. This condition is satisfied by the kernel of the following
form:

K(x, x′) = Φ
(
|x− x′|

)
exp

[
−(x− x′)2

l2

]
, (3)

where Φ(z) is a polynomial of a finite order. Such a model is attributed in the papers
[19, 20] with Φ(z) = A = const to the elastic medium containing the low density
inclusions. Using the fact that the function (3) extremely quickly approaches zero as
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|x − x′| grows, one can replace ρν+2(t, x′) in formula (2) by three terms of its power
series decomposition around x:

ρν+2(t, x′) = ρν+2(t, x′) +
x′ − x

1!

[
ρν+2(t, x′)

]
x

+
(x′ − x)2

2!

[
ρν+2(t, x′)

]
xx

+O
(
|x′ − x|3

)
,

obtaining after the integration DES

p =
1

ν + 2

(
β + σ

∂2

∂x2

)
ρν+2(t, x′), (4)

where β = Al
√
π(ν + 2), σ = Al3(ν + 2)

√
π/4. Further, the authors of [19] show that

the description of the dynamic properties of solutions supported by the model with the
integral DES (2) is qualitatively the same as that of the model in which the relation (4) is
used as a DES.

In papers [29, 30] in which the kernel

K(x, x′) = A
[
µ+ α(x− x′)2

]
exp

[
−(x− x′)2

l2

]
(5)

is used, a DES of the form (4) is obtained with the coefficients β = Al(ν + 2)
√
π ×

(2µ+αl2)/2, σ = Al3(ν+2)
√
πµ/4. It is easily seen that when µ < 0 and α > −2µ/l2,

then β remains positive, while σ becomes negative. Note that a well-established linear
strain–stress dependence corresponding to the above situation is presented in papers [3,9]
in which the model describing the propagation of waves in a crystal lattice taking into
account the influence of dislocations is considered.

In deriving the refined DES closing the hydrodynamic system (1), we will still assume
that the kernel function is described by formula (5) and simultaneously keep the terms up
of the order O(|x−x′|4) in the decomposition of the function ρ(t, x′) in the Taylor series
around x. After the integration, we get the following DES:

p =
1

ν + 2

(
β + σ∂2

x + κ∂4
x

)
ρν+2, (6)

where β = Al(ν + 2)
√
π(l2α + 2µ)/2, σ = Al3(ν + 2)

√
π(2µ + 3l2α)/8, κ =

Aµl5(ν + 2)
√
π/32. Obviously, the signs of the above parameters depend on the signs of

the coefficients µ and α. In what follows, we will be interested in the case when β and κ
are positive, while σ can be both positive and negative. Note that σ is negative, while the
remaining parameters are positive, if µ > 0, α < 0, and the following inequalities hold:
−αl2/2 < µ < −3αl2/2.

So, the employment of the model kernel (5) enables to vary the sign of the parameter σ
in the DES (6). Note, however, that the case σ > 0 can be obtained within the approach
presented in [20] just by keeping terms of the orderO(|x−x′|4) in the Taylor expansion of
the integrand. For σ < 0, a DES similar to (6) was obtained in the linear case in paper [9].
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In papers [9,20] the substantiation of the models used and their comparison with empirical
results are given. The DES obtained in [9] can be generalized to the nonlinear case, posing
the condition of the preliminary stress of the medium and moving away from the Hookean
stress–strain dependence.

Now, let us briefly describe the results obtained for the system

ut +
1

ν + 2

(
β + σ∂2

x

)
∂xρ

ν+2 = 0, (7)

ρt + ρ2ux = 0 (8)

extracted from (1) by replacement of p with the DES (4). System (7)–(8) is considered
in [29, 30], where the existence of solutions of the form

u = U(ξ), ρ = R(ξ), ξ = x− st (9)

describing solitary waves is shown, and the stability of these solutions is studied in detail.
The results obtained in this paper can be summarized as follows.

• If β > 0, σ < 0, and the inequalities

β(ν + 1)

2(ν + 2)
Rν+3

1 < s2 < βRν+3
1 , (10)

0 < R1 = lim
|ξ|→+∞

R(ξ) (11)

are satisfied, then there exist solutions describing the solitary waves of rarefaction.
• If, in turn, β > 0, σ > 0, and the inequality

s2 > βRν+3
1 (12)

is satisfied, then there exist solutions describing the solitary waves of compression.
• The solitary waves of rarefaction are spectrally stable under certain conditions,

while the solitary waves of compression are always unstable.

In the following, we will consider the system

ut +
1

ν + 2

(
β + σ∂2

x + κ∂4
x

)
∂xρ

ν+2 = 0, (13)

ρt + ρ2ux = 0 (14)

obtained by substituting the modified state equation (6) into system (1), mainly concen-
trating on stating the existence of the soliton-like TW solutions and studying how does
the addition of terms with higher derivatives affects the stability of soliton profiles and
their dynamical features. Note that in what follows, we will also keep conditions (10),
(11), and (12), which guarantee the presence of solitary waves in the limiting case κ = 0.
Note also that for σ < 0, conditions (10) and (11) act as a necessary conditions for the
existence of soliton-like solutions [24].

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Soliton-like solutions supported by refined hydrodynamic-type model 611

3 Qualitative and numerical study of the existence of solitary wave
solutions in model (13)–(14)(13)–(14)(13)–(14)

We are looking for the solitary wave solutions belonging to the set of functions (9). We
assume in addition that the solutions obey the asymptotics conditions

lim
|ξ|→+∞

U(ξ) = 0, lim
|ξ|→+∞

R(ξ) = R1 > 0.

Inserting the ansatz (9) into Eq. (14) and integrating the ODE obtained this way within
the interval (−∞, ξ), we get the quadrature

U(ξ) = s

(
1

R1
− 1

R(ξ)

)
.

Inserting then the TW ansatz into Eq. (13) and using the above quadrature for the elimi-
nation of U(ξ), we obtain, after one integration, the equation

s2

(
1

R(ξ)
− 1

R1

)
+

β

ν + 2

(
Rν+2 −Rν+2

1

)
+

1

ν + 2

(
σ
d2

d ξ2
+ κ

d4

d ξ4

)
Rν+2 = 0. (15)

We present Eq. (15) in the form of an equivalent dynamical system:
R
V
W
P


′

=


V
W
P

−Ψ(R, V,W,P )/(κRν+1)

 , (16)

where

Ψ(R, V,W,P ) = (ν + 1)κ
[
Rν
(
4V P + 3RνW 2

)
+ 6νRν−1V 2W + ν(ν − 1)Rν−2V 4

]
+ σ

[
Rν+1W + (ν + 1)RνV 2

]
+ Φ(R),

Φ(R) =
β

ν + 2

(
Rν+2 −Rν+2

1

)
+ s2

(
1

R
− 1

R1

)
.

The coordinates of the stationary points of the dynamical system are determined by
the relations V = W = P = Φ(R) = 0. The only nonzero coordinate R satisfies
the equation Φ(R) = 0 having one evident solution R = R1. Since we are interested
in localized TW solutions satisfying the asymptotics limξ→±∞R = R1, the stationary
point P = (R1, 0, 0, 0) should have the character of a saddle point, in other words, it must
have both ongoing and outgoing separatrices. Let us analyze under what conditions this is
possible. To this end, we consider the linearization of the system at the stationary point P .

Nonlinear Anal. Model. Control, 29(3):606–624, 2024
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Introducing the coordinate X = R − R1 and discarding the nonlinear terms in (16), we
obtain the system

X
V
W
P


′

=


0 1 0 0
0 0 1 0
0 0 0 1
−A 0 −B 0



X
V
W
P

 = M̂


X
V
W
P

 ,

where A = (βRν+3
1 − s2)/(κRν+3

1 ), B = σ/κ. The eigenvalues of the matrix M̂ can be
obtained by solving the characteristic equation

λ4 + λ2B +A = 0.

It is evident that the parameter θ = λ2, satisfying the corresponding quadratic equation,
attains the following values:

θ± =
−B ±

√
Ω

2
, Ω =

(
σ

κ

)2

− 4

κRν+3
1

(
βRν+3

1 − s2
)
.

So, the matrix M̂ will have a pair of real roots of different signs (this condition ensures
that the stationary point P has incoming and outgoing separatrices) if at least one of the
roots θ± is positive. Let us analyze such possibilities keeping inequalities (12) and (10)–
(11) for the cases of σ > 0 and σ < 0, respectively.

1. Case σ > 0 and s2 > βRν+3
1 . For such restrictions Ω > (σ/κ)2, so θ+ > 0, while

θ− < 0. Since the matrix M̂ has a pair of real roots of different signs and a pair of
purely imaginary roots, the stationary point P is a saddle-center.

2. Case σ < 0 and s2 < βRν+3
1 . Under the specified restrictions and the fulfillment

of the additional condition

σ2

κ
>

4κ

Rν+3
1

(
βRν+3

1 − s2
)
,

both θ+ and θ− are positive. Therefore, all the eigenvalues of the matrix M̂ are
real, half of them positive, and the stationary point P is a saddle.

Thus, in both cases, when the corresponding inequalities are satisfied, the stationary
point P possesses both ongoing and outgoing separatrices, which, in principle, can form
homoclinic loop. If such a trajectory does exist, it can be caught numerically by solving
initial value problem, with the initial data choosing sufficiently close to the stationary
point P , and lying on the line defined by the eigenvector (1, λ, λ2, λ3), where λ is a pos-
itive eigenvalue of the matrix M̂ . The results of numerical experiments are shown in
Figs. 1, 2, which represent both the homoclinic trajectories and the corresponding soliton-
like solutions of the initial system (13)–(14).
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(a) (b)

Figure 1. Profile of the solitary wave (a) and the projection of the corresponding homoclinic solution onto the
R,R′-plane (b) obtained for the following values of the parameters: ν = 0, R1 = 1, β = 2, s = 1.2,
σ = −1.8, κ = 1.2.

(a) (b)

Figure 2. Profile of the solitary wave (a) and the projection of the corresponding homoclinic solution onto the
R,R′-plane (b) obtained for the following values of the parameters: ν = 0,R1 = 1, β = 0.8, s = 1, σ = 1.8,
κ = 1.25.

Remark 1. In the case when the stationary point P is a saddle-center, it is very difficult
to obtain the homoclinic trajectory by the direct numerical integration because the incom-
ing trajectory is extremely unstable. Therefore, in order to obtain the homoclinic loop
presented in Fig. 2, we used a combined method. First, we obtained numerically a half-
trajectory moving along the outgoing separatrix until the value ξ0 at which the function
R(ξ) reached its maximum. The remaining part of the trajectory was obtained using the
parity of the function R(ξ) resulting from the invariance of Eq. (15) with respect to the
change of the independent variable ξ → −ξ.

Remark 2. We restricted ourselves to analyzing the eigenvalues of the matrix M̂ only
for the cases listed above, omitting two other cases, namely,

(σ > 0) ∧
(
s2 > βRν+3

1

)
and (σ < 0) ∧

(
s2 < βRν+3

1

)
for the reason that conditions (10), (11) in the case when σ < 0 and, most likely,
condition (12) in the case when σ > 0 serve as necessary conditions for the existence
of the trajectories biasymptotic to the stationary point P [24].
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4 Spectral stability of the soliton-like solutions

In the study of spectral stability of TW solutions, it is helpful to pass to new independent
variables t̄ = t, ξ̄ = x − st in which the invariant TW solutions (9) become stationary.
In the new variables, system (13)–(14) reads as follows:

ut̄ − suξ̄ +
1

ν + 2
L∂ξ̄ρν+2 = 0, ρt̄ − sρξ̄ + ρ2uξ̄ = 0, (17)

where L = β + σ∂2
ξ̄

+ κ∂4
ξ̄

. For the sake of simplicity, the bars will be omitted from
now on. We restrict ourselves to the analysis of spectral stability [10,11,16,23] of the TW
solution [U(ξ), R(ξ)]tr and consider the perturbations of the following form:

u(t, ξ) = U(ξ) + ε exp[λt]f(ξ), ρ(t, ξ) = R(ξ) + ε exp[λt]g(ξ), (18)

where λ is the spectral parameter, and |ε| � 1.
Inserting the ansatz (18) into system (17) and neglecting the terms of the orderO(|ε|2),

we obtain the system linearized about the traveling wave solutions:

fλ− sf ′ + L
[
Rν+1g

]′
= 0, R2f ′ − sg′ + g(λ+ 2RU ′) = 0, (19)

where the primes denote derivatives with respect to ξ.
It is obvious that system (19) can be treated as a spectral problem

Ly = λy, y = (f, g)tr (20)

for the operator

L =

(
s∂ξ, −L{[Rν+1]′ +Rν+1∂ξ}
−R2∂ξ, s∂ξ − 2RU ′

)
. (21)

Recall that the set of all possible values of λ ∈ C for which equation (20) has
nontrivial solutions is called the spectrum Σ of the operator L. The homoclinic solution
[U(ξ), R(ξ)]tr is said to be spectrally stable if no possible eigenvalue λ belongs to the
right half-plane of the complex plane [16].

As usually, we distinguish the essential spectrum Σess ⊂ Σ and the discrete spectrum
Σdiscr ⊂ Σ. Being somewhat informal, we can interpret Σess and Σdiscr as the subsets
responsible, respectively, for the stability of the asymptotic stationary solution (0, R1)
and the solution [U(ξ), R(ξ)]tr itself.

Now we are going to state the conditions, which guarantee that the set Σess ∩ C+ is
empty. In the limiting case |ξ| → ±∞, the variational system turns into the linear system
with constant coefficients

λf = sf ′ − LRν+1
1 g′, λg = sg′ −R2

1f
′. (22)

Location of the essential spectrum can be determined using the Fourier transform. Apply-
ing the latter to system (22), we get

M̂(η, λ)

(
f̂(η)
ĝ(η)

)
=

(
λ+ iηs, −iηRν+1

1 L̂(η)
−iηR2

1, λ+ iηs

)(
f̂(η)
ĝ(η)

)
= 0, (23)

https://www.journals.vu.lt/nonlinear-analysis
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where f̂(η) and ĝ(η) are the Fourier transforms of f(ξ) and g(ξ), respectively,

L̂(η) = β − ση2 + κη4.

Equating det M̂(η, λ) to zero, we obtain the expression for eigenvalues

λ1,2 = −iηs ± iηR
(ν+3)/2
1

√
β − ση2 + κη4, η ∈ R.

Thus, the following assertion holds.

Statement. If L̂(η) > 0 for all η ∈ R, then Σess is located on the imaginary axis.
Otherwise, Σess ∩ C+ 6= ∅.

Let us now analyze what restrictions the condition

β − ση2 + κη4 > 0, η ∈ R, (24)

poses on the coefficients. First of all, we note that the fulfillment of condition (24) is
impossible when κ < 0 and that is the reason on why we have restricted our consideration
to the case κ > 0.

In case of the positive κ, fulfillment of condition (24) is possible if all the roots of the
equation

β − ση2 + κη4 = 0 (25)

have nonzero imaginary parts. Analyzing the roots

η = ±

√
σ ±
√
∆

2κ
, ∆ = σ2 − 4βκ

of the biquadratic equation (25), the following subcases can be distinguished:

1. σ > 0, ∆ < 0;
2. σ < 0, ∆ is arbitrary.

For these cases, it makes sense to study the location of the points of the discrete
spectrum.

5 Study of the discrete spectrum

We shall study the discrete spectrum of the operator (21) by means of the Evans function
technique [10, 11], which is widely used in studying discrete spectra of linear operators
with variable coefficients. To construct the Evans function for the case under consider-
ation, some preliminary calculations should be performed. At first, using the new vari-
ables

Rg = v, κZ = sf − βv − σv′′ − κv′′′′,

Nonlinear Anal. Model. Control, 29(3):606–624, 2024
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the linearized system (19) can be transformed for the case ν = 0 into the following system
of first-order equations:

Y ′ =


f
v
Z1

Z2

Z3

Z



′

=


0 −(λ+2U ′R+sR′/R)/R3 s/R3 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
s/κ −β/κ 0 −σ/κ 0 −1
λ/κ 0 0 0 0 0




f
v
Z1

Z2

Z3

Z


= AY. (26)

Due to the asymptotic behavior of solitary waves, the matrix A attains the same form at
±∞, which is as follows:

A∞ =


0 −λ/R3

1 s/R3
1 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
s/κ −β/κ 0 −σ/κ 0 −1
λ/κ 0 0 0 0 0

 .

Since there are many publications devoted to the Evans function method, there is no
point in describing it in detail. We only note that the main idea of this method is the
study of intersections of sets W±λ (ξ), where W−λ (ξ) denotes the manifold spanned on the
solutions of (26) that decay as x→ −∞, while W+

λ (ξ) denotes the manifold spanned on
the solutions of (26) that decay as x→ +∞. And if for some λ0, W−λ0

(ξ)∩W+
λ0

(ξ) 6= ∅,
then λ0 ∈ Σdiscr. Note also that the function proposed by Evans in the works [10, 11] is
an analytic function of the parameter λ that nullifies at the points of the discrete spectrum
of the corresponding linear operator.

The way of the Evans function evaluation depends on the structure of stable and un-
stable manifolds for system (26) at infinity. In turn, the dimensions of these manifolds are
defined by the spectrum of the matrixA∞, which can be evaluated from the corresponding
characteristic polynomial

det
∥∥A∞ − µI∥∥ = (λ− sµ)2 −R3

1µ
2
(
β − σµ2 + κµ4

)
= 0. (27)

Equation (27) possesses six roots representing the matrix eigenvalues. When the eigen-
value µ is not multiple, the corresponding eigenvector is

~Yµ =

(
sµ− λ
µR3

1

; 1;µ;µ2;µ3;λ
sµ− λ
κµ2R3

1

)
.

In our case, the spectrum consists of three eigenvalues with positive real parts and the
same number of eigenvalues with the negative real parts. Thus, in order to get the bounded
solutions of system (26) vanishing at infinity, the intersections of three dimensional man-
ifolds should be gained.
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To do this, we use the approach involving exterior algebra [2,5]. Thus, we consider the
dynamics of system (26) on the wedge vector space∧3(C6) (with standard basis) in which
three linearly independent vectors can be represented as a point [1], i.e. it is the space of
all three-forms on C6. Then the induced system reads as follows: ~Z ′ = A(3) ~Z, ~Z ∈ C20,
where the explicit form of the matrix A(3) can be found in [1, p. 256, App.] or [14,
App. A]. As is well known [2], the eigenvalues of limiting matrix (A∞)(3) coincide with
all possible sums of eigenvalues of the matrix A∞. Thus, the eigenvalue of (A∞)(3) with
smallest real part is the sum of all eigenvalues of A∞ with negative real parts, while the
eigenvalue of (A∞)(3) with the largest real part is the sum of all eigenvalues of A∞ with
positive real parts. Using the definition of three-form construction and expression for ~Yµ,
the explicit forms of corresponding eigenvectors ~Z±∞ of (A∞)(3) can be written.

To construct the Evans function [1, 4, 5, 13–15, 18], we integrate the induced system
over the interval [0, L], where L represents the numerical infinity, starting from the eigen-
vector ~Z+∞ at ~Z(L), and over the interval [−L, 0] starting from the eigenvector ~Z−∞ at
~Z(−L). Then, taking the resulting solutions ~Z+(ξ) and ~Z−(ξ) and evaluating their values
at the point ξ = 0, we can construct the Evans function, which is defined as follows:

Ev(λ) = ~Z−(0)tr · Σ̂ · ~Z+(0),

where Σ̂ is the skew-symmetric antidiagonal matrix [2, 14] with the following nonzero
entries Σ̂i, 21−i = −1 for i = 2, 4, 6, 9, 12, 15, 17, 19 and Σ̂i,21−i = 1 for other diagonal
elements.

Next, we evaluate the Evans function for the specified parameter values and consider
two cases (for both cases ν = 0 and R1 = 1).

Case 1. The parameter values are as follows:

β = 2, s = 1.2, σ = −1.8, κ = 1.2.

Choosing the parameters as above, we get the subcase 2 mentioned at the end of the
previous section, namely, σ < 0 and ∆ = −6.36 < 0. First, we take the solitary wave
shown in Fig. 1. The shape of the curve tells us that this wave can be referred as a rar-
efaction wave. Applying the procedure of the Evans function evaluation outlined above,
the graph of Ev(λ) vs. real λ is obtained and is shown in Fig. 3(a). Since the curve does
not intersect the horizontal axis, we can state that there are no positive real eigenvalues
belonging to Σdiscr. In order to study the presence of complex discrete eigenvalues in the
right half-plane, we use the Nyquist diagram technique. The values of the Evans function
are derived along the closed contour lying in the right half-plane. Conventionally, the
contour in the form of a semicircle is used, i.e. λ = d+reiθ. The typical Nyquist diagram
is presented in Fig. 3(b). The contour becomes more complicated when the radius of circle
r increases, yet the curve still does not enclose the origin, i.e. the winding number is zero.
Thus, the eigenvalues with positive real parts inside the considered regions of the right
half-plane were not found in numerical experiments, and the solitary wave of rarefaction
can be considered as spectrally stable.
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(a) (b)

Figure 3. Evans function outputs for real values of λ (a) and for semicircular contour λ = d+ reiθ , d = 0.1,
r = 2 (b), evaluated at the following values of the parameters: β = 2, s = 1.2, σ = −1.8, κ = 1.2.

(a) (b)

Figure 4. Evans function outputs for real values of λ (a) and for semicircular contour λ = d+ reiθ , d = 0.1,
r = 2 (b), evaluated at the following values of the parameters: β = 0.8, s = 1, σ = 1.8, κ = 1.25.

Case 2. The fixed parameter values are as follows:

β = 0.8, s = 1, σ = 1.8, κ = 1.25.

This is subcase 1 corresponding to σ > 0 and ∆ < 0 (see the classification given at the
end of the previous section). The profile of the solitary wave and the projection of the
phase trajectory of Eq. (15) on the R,R′-plane are plotted in Fig. 2, correspondingly. In
contrast to the previous case, the solitary wave represents the wave of compression. The
real-valued Evans function is presented in Fig. 4(a), whereas the Evans function output
along the closed contour λ = d + reiθ, where d = 0.1 and r = 2, is plotted in Fig. 4(b).
From these it follows that there are no discrete eigenvalues with positive real part in the
corresponding regions of the positive half-plane of the complex plane, and, like in the
previous case, the solitary wave of compression can be considered as spectrally stable.
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6 Numerical simulations of dynamical behavior of the soliton-like
solutions

To check the results of above analysis concerning the wave stability, the simulations of
interaction of a pair of solitary waves are performed. To do this, we apply the proper
numerical schemes for system (13)–(14) written in somewhat different form, namely,

∂u

∂t
+
∂p

∂x
= 0,

∂r

∂t
= u,

∂

∂t

(
1

ρ

)
− ∂u

∂x
= 0, (28)

p =
β

2
ρ2 +

σ

2

(
ρ2
)
xx

+
κ

2

(
ρ2
)
xxxx

,

where r(t) is the trajectory of a medium element.
The numerical scheme for system (28) is based on the integro–interpolating method

[22] in which the approximation of the integral conservation laws is used. Note that,
instead of the second equation of system (1), it is more convenient to use the following
equation describing the volume element changing [22]:

∂r

∂x
=

1

ρ
− 1

R1
.

Within the framework of this approach, the following fully conservative numerical
scheme is derived:

uj+1
i − uji
τ

= −γ
h

(
pj+1
i − pj+1

i−1

)
− 1− γ

h

(
pji − p

j
i−1

)
,

rj+1
i − rji
τ

=
uj+1
i + uji

2
, rj+1

i+1 − r
j+1
i =

h

ρj+1
i

− h

R1
,

pj+1
i =

β

2
(ρj+1
i )2 +

σ

2

(ρj+1
i−1 )2 − 2(ρj+1

i )2 + (ρj+1
i+1 )2

h2

+
κ

2

(ρj+1
i−2 )2 − 4(ρj+1

i−1 )2 + 6(ρj+1
i )2 − 4(ρj+1

i+1 )2 + (ρj+1
i+2 )2

h4
,

(29)

where i = 3, . . . , N − 2. Here γ = 0.5, h and τ are spatial and temporal steps, respec-
tively. From this scheme the quantities uj+1

i and rj+1
i can be excluded. Then we reduce

relations (29) to the system with respect to pj+1
i and ρj+1

i .
Using scheme (29), the evolution of a single solitary wave and collision of two iden-

tical waves moving toward each other are studied. The solutions of the latter problem are
presented in Figs. 5 and 6 for cases 1 and 2, respectively. Analysis of the figures testifies
that each solitary wave moves in self-similar mode. Moreover, the interaction, which is
very similar to elastic (especially, in case 2), is revealed. The similar results are obtained
also when there are used other numerical schemes, in particular, the scheme based on
the Galerkin approximation. Thus, the numerical simulations confirm the conclusions of
theoretical treatment concerning the stability of localized traveling wave solutions.
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(a) (b)

Figure 5. Collision of the solitary waves for the parameters corresponding to case 1. Panel (a) shows three
profiles derived at t = 0 (blue curve), t = 22.5 (red curve), and t = 40 (green curve) time units. Panel (b)
represents the 3D graph of wave interaction. Scheme parameters are as follows: h = 0.0408, τ = 0.05, and
N = 2500.

(a) (b)

Figure 6. Collision of the solitary waves for the parameters corresponding to the case 2. Panel (a) shows four
profiles derived at t = 0 (blue curve), t = 20 (brown curve), t = 30 (green curve), and t = 60 (red curve) time
units. Panel (b) represents the 3D graph of wave interaction. Scheme parameters are as follows: h = 0.225,
τ = 0.05, and N = 500.

Another interesting and important problem concerning the solitary wave dynamics is
the tracking of temporal evolution of an arbitrary wave disturbance. As an initial data
we take a function different from the solitary wave solution. Since model (28) contains
the higher derivatives, we should take a sufficiently smooth initial profile. The following
initial density profile is used in the numerical experiments:

ρ =

{
a((x− x0)2 − y2

0)4 +R1 if |x− x0| < y0,

R1 otherwise.
(30)

The profile corresponding to a = 3.6 ·10−14, x0 = 40, and y0 = 50 is shown in Fig. 7(a).
For comparison, the profile of the solitary wave from Fig. 2(a) is also shown on this graph.

Basing on formula (30), we construct the initial data for the pressure field using the
following formula:

p =
β

2
ρ2 + σ

(
ρ2
x + ρρxx

)
+ κ
(
3ρ2
xx + 4ρxρxxx + ρF (ρ, ρx, ρxx, ρxxx)

)
,
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(a) (b)

(c)

Figure 7. Splitting of the disturbance (30) into the train of solitary waves. Panel (a) shows initial density
profile (30) (curve 1) and solitary wave from Fig. 2(a) (curve 2). Panel (b) represents solutions’ profiles derived
at t = 0 (blue curve coinciding with curve 1 in panel (a)), t = 80 (brown curve), t = 240 (green curve),
and t = 460 (magenta curve). Panel (c) shows the enlargement of the solitary train profile taken at t = 460
(magenta curve), and doubly repeated curve 2 from the panel (a) shown for comparison (black curve).

where

F = (κρ)−1
(
s2
(
R−1

1 − ρ−1
)

+ 0.5β
(
R2

1 − ρ2
)
− σ

(
ρ2
x + ρρxx

)
− κ
(
3ρ2
xx + 4ρxρxxx

))
.

The scheme parameters are N = 4000 points, L = 800, space step h = L/N ,
temporal step τ = 0.2. Integration of scheme (29) over the 2300τ = 460 time units results
in wave dynamics shown in Fig. 7(b). Analysis of this figure shows the development of
a train of solitary waves. Comparing the profiles of humps formed at t = 460 with the
solitary wave profile (Fig. 7(c)), we see the equality of their widths.

7 Conclusions

So, the paper considers a modified model of a structured media proposed in [20, 29].
The modification consists in incorporating an extra term into the Taylor decomposition
used when deriving the dynamic equation of state connecting the pressure field with
the density field. We are mainly interested in whether the soliton-like solutions are still
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supported by the modified model, and if so, then what their properties would be. The
results of numerical experiments performed both for σ < 0 and σ > 0 show that, under
certain restrictions, the modified model describes the solitary waves of compression and
rarefaction, that is, among its solutions, there are the same wave structures as in the
model considered in [29]. However, this is where the coincidence of the properties of
the models ends, since it is strictly proved in [29] that only solitary waves of rarefaction
are spectrally stable under certain conditions, while the solitary waves of compression are
always unstable.

The results of current research show that the solitary waves of rarefaction supported by
the modified model remain stable. At the same time, previously unstable solitary waves of
compression acquire the stability due to the incorporation of the higher order terms of the
asymptotic expansion into the dynamic equation of state. It is also shown that an arbitrary
initial perturbation in the course of evolution splits into a series of impulses similar to
solitary waves of compression, and, thus, some properties of the solutions obtained in the
framework of the proposed model coincide with the properties of solutions of completely
integrable soliton models. In connection with this, let us note that system (13)–(14)
is a modification of model (7)–(8), which does not pass the integrability test [29, 30].
Therefore, system (13)–(14) is most likely nonintegrable as well, but this makes the
properties of its solutions even more interesting since they refute to a certain extent the
popular belief that the soliton properties of solutions are related to such property of the
integrable systems as the presence of an infinite set of conservation laws.

Let us note in conclusion that the presence of soliton solutions in system (13)–(14)
is shown in this work using numerical methods. Due to the multidimensionality of the
factorized system (16), a strict substantiation of this fact is a rather difficult problem
requiring the use of functional methods [21, 25]. For the case of σ < 0, this problem
is solved in the paper [24], but its complete solution, as well as a rigorous proof of the
stability of soliton-like solutions in a wide range of parameter’s values, requires additional
research.

Acknowledgment. One of the authors of this article (V.V.) acknowledges support from
the Polish Ministry of Science and Higher Education.
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