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Abstract. In this paper, we introduce two new algorithms for solving variational inequalities in
Banach spaces. Our aim is finding a common element of the solution set of variational inequalities
(for two inverse-strongly monotone operators) and an equilibrium problem and the set of fixed
points of two relatively nonexpansive mappings and a family of resolvent operators. Then the strong
convergence of the sequences generated by these algorithms to this element will be proved under
suitable conditions. Finally, we provide a numerical example to illustrate our main results.
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1 Introduction

It is well known that variational inequalities are useful and important tools for the study of
some branches of applied sciences, and they arise, for example, in optimization problems,
equilibrium models, Nash equilibrium problems in noncooperative games, partial differ-
ential equation problems, and other problems (see [17, 24]). One of the most important

1Corresponding author.

© 2026 The Author(s). Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

https://orcid.org/0000-0002-6385-2054
https://orcid.org/0000-0002-7814-7219
https://orcid.org/0000-0003-0634-2370
https://orcid.org/0000-0002-4096-1469
mailto:ghadampour.m@pnu.ac.ir
mailto:sori.e@lu.ac.ir
mailto:agarwalr@fit.edu
mailto:donal.oregan@nuigalway.ie
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/


2 M. Ghadampour et al.

methods for solving variational inequalities is the extragradient method introduced by Ko-
rpelevich [14] in a finite-dimensional space, which requires two projections onto a closed
and convex set and two evaluations of an operator per each iteration. Many authors
extended this method to infinite-dimensional spaces (see [7, 10, 24]).

The equilibrium problem is very general because it includes many well-known prob-
lems such as variational inequality problems, saddle point problems, etc. (see [6, 11]).
Several methods have been proposed to solve the equilibrium problem in Hilbert space
(see [4, 15]), and some authors obtained weak and strong convergence algorithms for
finding a common element of the set of solutions of an equilibrium problem and the set of
fixed points of a nonexpansive mapping in a Hilbert space (see [20,21]). Then the authors
proved the strong convergence of the algorithms in a uniformly convex and uniformly
smooth Banach space (see [3]).

In this paper, motivated by Cai et al. [4] and Ghadampour et al. [8], using two inverse
strongly monotone operators and a family of resolvent operators, we present two new
hybrid algorithms. Then we show that our generated sequences are strongly convergent to
a common element of the solution set of two variational inequality problems and the fixed
point set of two relatively nonexpansion mappings and the fixed point set of a family of
resolvent operators and the solution set of the equilibrium problem.

2 Preliminaries

Suppose that C is a nonempty closed convex subset of a real Banach space X with the
norm ‖·‖ and X∗ is the dual of X . The variational inequality problem (VI) is as follows:

• Find a point x ∈ C such that

〈Ax, y − x〉 > 0 for all y ∈ C,

where A is a mapping of C into X∗, and 〈·, ·〉 denotes the duality pairing. The
solution set of the variational inequality problem is denoted by VI (C,A).

The operator A : X → 2X
∗

is said to be
(i) monotone if 〈x− y, x∗ − y∗〉 > 0 for all x, y ∈ X and x∗ ∈ Ax, y∗ ∈ Ay;

(ii) α-inverse strongly monotone if there exists a constant α > 0 such that

〈x− y, x∗ − y∗〉 > α‖x∗ − y∗‖2, x, y ∈ X, x∗ ∈ Ax, y∗ ∈ Ay;

(iii) L-Lipchitz continuous if there exists L > 0 such that

‖x∗ − y∗‖ 6 L‖x− y‖, x, y ∈ X, x∗ ∈ Ax, y∗ ∈ Ay;

(iv) demiclosed if for all {xn} ⊂ X with xn ⇀ x in X and yn ∈ Axn with yn → y
in X∗, it follows that x ∈ X and y ∈ Ax.

A monotone mappingA is called maximal if its graphG(A) = {(x,Ax): x ∈ D(A)}
is not properly contained in the graph of any other monotone mapping. Clearly, the
monotone mappingA is maximal if and only if for (x, x∗) ∈ X×X∗, 〈x−y, x∗−y∗〉 > 0
for each (y, y∗) ∈ G(A). Then it is implied that x∗ ∈ Ax.
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New strong convergence algorithms for general equilibrium 3

Let f : C × C → R be a bifunction. The equilibrium problem (EP) is as follows:

• Find x ∈ C such that

f(x, y) + 〈Ax, y − x〉 > 0 for all y ∈ C. (1)

The solution set of (1) is denoted by EP(f).

Let X be a real smooth Banach space with the norm ‖·‖, and let X∗ be the dual space
of X . A function δ : [0, 2]→ [0, 1] is said to be the modulus of convexity of X if

δ(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ 6 1, ‖y‖ 6 1, ‖x− y‖ > ε

}
for every ε ∈ [0, 2]. A Banach space X is said to be uniformly convex if and only if
δ(ε) > 0 for all ε > 0. It is well known that a uniformly convex Banach space has
the Kadec–Klee property, that is, xn ⇀ u and ‖xn‖ → ‖u‖ imply that xn → u (see
[18]). Let p be a fixed real number with p > 2. A Banach space X is called p-uniformly
convex [23] if there exists a constant c > 0 such that δ > cεp for all ε ∈ [0, 2]. The duality
mapping J : X → 2X

∗
is defined by

J(x) =
{
f ∈ X∗: 〈x, f〉 = ‖x‖2 = ‖f‖2

}
for every x ∈ X . Let S(X) = {x ∈ X: ‖x‖ = 1}. A Banach space X is said to
be smooth if for all x ∈ S(X), there exists a unique functional jx ∈ X∗ such that
〈x, jx〉 = ‖x‖ and ‖jx‖ = 1 (see [1]).

The norm of X is said to be Gâteaux differentiable if for each x, y ∈ S(X), the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2)

exists. In this case, X is said to be smooth, and X is called uniformly smooth if the
limit (2) is attained uniformly for all x, y ∈ S(X) [22]. If a Banach space X is uniformly
convex, then X is reflexive and strictly convex, and X∗ is uniformly smooth [1]. It is
well known that if X is a reflexive, strictly convex, and smooth Banach space and J∗ :
X∗ → X is the duality mapping on X∗, then J−1 = J∗. Also, if X is a uniformly
smooth Banach space, then J is uniformly norm-to-norm continuous on bounded sets of
X , and J−1 = J∗ is also uniformly norm-to-norm continuous on bounded sets of X∗.
Let X be a smooth Banach space, and let J be the duality mapping on X . The function
φ : X ×X → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for all x, y ∈ X. (3)

Clearly, from (3) we can conclude that(
‖x‖ − ‖y‖

)2
6 φ(x, y) 6

(
‖x‖+ ‖y‖

)2
. (4)
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If X is a reflexive, strictly convex, and smooth Banach space, then, for all x, y ∈ X ,

φ(x, y) = 0 if and only if x = y.

Also, it is clear from the definition of the function φ that the following condition holds
for all x, y ∈ X:

φ(x, y) = 〈x, Jx− Jy〉+ 〈y − x, Jy〉
6 ‖x‖‖Jx− Jy‖+ ‖y − x‖‖y‖. (5)

Now, the function V : X ×X∗ → R is defined as

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2

for all x ∈ X and x∗ ∈ X∗. Moreover, V (x, x∗) = φ(x, J−1x∗) for all x ∈ X and
x∗ ∈ X∗. If X is a reflexive strictly convex and smooth Banach space with X∗ as its
dual, then

V (x, x∗) + 2
〈
J−1x∗ − x, y∗

〉
6 V (x, x∗ + y∗) (6)

for all x ∈ X and all x∗, y∗ ∈ X∗ [13].
An operator A : C → X∗ is hemicontinuous at x0 ∈ C if for any sequence {xn}

converging to x0 along a line, the sequence {Axn} converges weakly toAx0, i.e., Axn =
A(x0+tnx)⇀ Ax0 as tn → 0 for each x ∈ C. The generalized projectionΠC : X → C
is the mapping that assigns to each point x ∈ X the minimizer of the functional φ(y, x);
i.e., ΠCx = x0, where x0 is the solution of the minimization problem

φ(x0, x) = min
y∈C

φ(y, x).

The existence and uniqueness of the operator ΠC follow from the properties of the func-
tional φ(x, y) and strict monotonicity of the mapping J [2]. Let C be a nonempty closed
convex subset of X , and let T be a self mapping on C. We denote the set of fixed points
of T by F (T ), that is, F (T ) = {x ∈ C: x ∈ Tx}. A point p ∈ C is said to be an
asymptotically fixed point of T if C contains a sequence {xn}, which converges weakly
to p and Txn − xn → 0 [1]. The set of asymptotical fixed points of T will be denoted by
F̂ (T ). A mapping T from C into itself is called relatively nonexpansive if F̂ (T ) = F (T )
and φ(p, Tx) 6 φ(p, x) for each x ∈ C and p ∈ F (T ). The asymptotic behavior of
a relatively nonexpansive mapping was studied in [5].

We need the following lemmas for proving our main results.

Lemma 1. (See [12].) Let X be a smooth and uniformly convex Banach space, and let
{xn} and {yn} be two sequences of X . If φ(xn, yn) → 0 and either {xn} or {yn} is
bounded, then xn − yn → 0.

Lemma 2. (See [2].) Let C be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space X , and let y ∈ X . Then

φ(x,ΠCy) + φ(ΠCy, y) 6 φ(x, y) for all x ∈ C.
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Lemma 3. (See [2].) Let C be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space X , and let x ∈ X , z ∈ C. Then

z = ΠCx if and only if 〈y − z, Jx− Jz〉 6 0 for all y ∈ C.

Lemma 4. (See [27].) Let X be a 2-uniformly convex and smooth Banach space. Then,
for all x, y ∈ X , we have that

‖x− y‖ 6 2

c2
‖Jx− Jy‖,

where 1/c (0 < c 6 1) is the 2-uniformly convex constant of X .

Lemma 5. (See [27].) Let X be a uniformly convex Banach space and r > 0. Then there
exists a continuous strictly increasing convex function g : [0, 2r] → [0,+∞) such that
g(0) = 0 and∥∥tx+ (1− t)y

∥∥2 6 t‖x‖2 + (1− t)‖y‖2 − t(1− t)
× g
(
‖x− y‖

)
for all x, y ∈ Br(0), t ∈ [0, 1]

where Br(0) = {z ∈ E: ‖z‖ 6 r}.

Lemma 6. (See [12].) Let X be a uniformly convex Banach space and r > 0. Then there
exists a continuous strictly increasing convex function g : [0, 2r] → [0,+∞) such that
g(0) = 0 and

g
(
‖x− y‖

)
6 φ(x, y) for all x, y ∈ Br(0),

where Br(0) = {z ∈ X: ‖z‖ 6 r}.

Throughout this paper, we assume that f : C × C → R is a bifunction satisfying the
following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) 6 0 for all x, y ∈ C;
(A3) limt↓0 f(tz + (1− t)x, y) 6 f(x, y) for all x, y, z ∈ C;
(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.

Lemma 7. (See [16].) Let C be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach spaceX ,A : C −→ X∗ be an α-inverse-strongly monotone
operator, and let f be a bifunction from C × C to R satisfying (A1)–(A4). Then, for all
r > 0, the following hold:

(i) For x ∈ X , there exists u ∈ C such that

f(u, x) + 〈Au, y − u〉+ 1

r
〈y − u, Ju− Jx〉 > 0 for all y ∈ C.

(ii) If X is additionally uniformly smooth and Kr : X −→ C is defined as

Kr(x) =

{
u ∈ C: f(u, y) + 〈Au, y − u〉+ 1

r
〈y − u, Ju− Jx〉 > 0, y ∈ C

}
,
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then the following conditions hold:
1. Kr is single-valued,
2. Kr is firmly nonexpansive, i.e., for all x, y ∈ X ,

〈Krx−Kry, JKrx− JKry〉 6 〈Krx−Kry, Jx− Jy〉,

3. F (Kr) = F̂ (Kr) = EP(f),
4. EP is a closed convex subset of C,
5. φ(p,Krx) + φ(Krx, x) 6 φ(p, x) for all p ∈ F (Kr).

The normal cone for C at a point υ ∈ C is denoted by NC(υ), that is, NC(υ) :=
{x∗ ∈ X∗: 〈υ − y, x∗〉 > 0 for all y ∈ C}.

Lemma 8. (See [19].) Let C be a nonempty closed convex subset of a Banach space X
and T be monotone and hemicontinuous operator of C into X∗ with C = D(T ), and let
B ⊂ X ×X∗ be an operator defined as follows:

Bv =

{
Tv +NCv, v ∈ C,
∅, v /∈ C.

Then B is maximal monotone and B−1(0) = VI (C, T ).

Definition 1. (See [25].) Let X be a real smooth and uniformly convex Banach space,
and letM : X → 2X

∗
be a maximal monotone operator. For all ξ > 0, define the operator

QMξ : X → X by QMξ x = (J + ξM)−1Jx for all x ∈ X .

Lemma 9. (See [22].) Let X be a real smooth and uniformly convex Banach space, and
let M : X → 2X

∗
be a maximal monotone operator. Then M−10 is a closed and convex

subset of X , and the graph G(M) of M is demiclosed.

Lemma 10. (See [26].) Let X be a real reflexive, strictly convex, and smooth Banach
space, and let M : X → 2X

∗
be a maximal monotone operator with M−10 6= ∅. Then,

for all x ∈ X , y ∈M−10, and ξ > 0, φ(y,QMξ x) + φ(QMξ x, x) 6 φ(y, x).

3 Main results

In this section, we introduce our new iterative algorithms.

Theorem 1. Let X be a real 2-uniformly convex and uniformly smooth Banach space,
and let X∗ be the dual space of X . Suppose that C is a nonempty closed and convex
subset of X and the mappings A,B : C → X∗ are α-inverse strongly monotone and
β-inverse strongly monotone, respectively. Let Mi : X → 2X

∗
be a maximal monotone

operator with Mi
−10 6= ∅ for each i = 1, 2, . . . ,m. Assume that f and T are relatively

nonexpansive mappings from C into itself and Γ = F (f) ∩ F (T ) ∩ (∩mi=1F (Q
Mi

ξ )) ∩
VI (C,A) ∩ VI (C,B) 6= ∅. Let ‖Ax‖ 6 ‖Ax − Au‖, ‖Bx‖ 6 ‖Bx − Bu‖ for each
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u ∈ Γ and x ∈ C. Suppose that {xn} is a sequence generated by x1 ∈ C and

un = ΠCJ
−1

(
sn,0Jxn +

m∑
i=1

sn,iJQ
Mi

ξ xn

)
,

zn = ΠCJ
−1(Jun − µBun), yn = ΠCJ

−1(Jzn − λAzn),

wn = J−1

(
m∑
i=1

βn,iJQ
Mi

ξ zn +

m∑
i=1

γn,iJQ
Mi

ξ yn

)
,

xn+1 = ΠCJ
−1[αn,1Jfxn + αn,2Jun + αn,3JTyn + αn,4Jwn

]
,

where {βn,i}mi=1, {γn,i}mi=1, and {sn,i}mi=0 are real sequences in [a, b] ⊂ (0, 1),∑m
i=1(βn,i + γn,i) = 1, and

∑m
i=0 sn,i = 1. Suppose that µ, λ and {αn,i}4i=1 satisfy

the following conditions:

(i) {αn,i} ⊂ (0, 1),
∑4
i=1 αn,i = 1, lim infn→+∞ αn,4, lim infn→+∞ αn,1αn,2,

lim infn→+∞ αn,2αn,3 > 0;
(ii) λ and µ are real numbers such that 0 < λ < c2α/2 and 0 < µ < c2β/2, where

1/c is the 2-uniformly convexity constant of X .

Then {xn} converges strongly to q = Π
F (T )∩(∩mi=1F (Q

Mi
ξ ))∩VI (C,A)∩VI (C,B)

◦ f(q).

Proof. Let û ∈ Γ = F (f) ∩ F (T ) ∩ (∩ni=1F (Q
Mi

ξ )) ∩ VI (C,A) ∩ VI (C,B). By (3),
Lemma 2, the convexity of ‖·‖2, and our assumptions, we have

φ(û, un) 6 φ

(
û, J−1

(
sn,0Jxn +

m∑
i=1

sn,iJQ
Mi

ξ xn

))

= ‖û‖2 − 2

〈
û, sn,0Jxn +

m∑
i=1

sn,iJQ
Mi

ξ xn

〉

+

∥∥∥∥∥sn,0Jxn +

m∑
i=1

sn,iJQ
Mi

ξ xn

∥∥∥∥∥
2

6 ‖û‖2 − 2sn,0〈û, Jxn〉 − 2

m∑
i=1

sn,i〈û, JQMi

ξ xn〉+ sn,0‖xn‖2

+

m∑
i=1

sn,i
∥∥QMi

ξ xn
∥∥2

= sn,0φ(û, xn) +

m∑
i=1

sn,iφ
(
û, QMi

ξ xn
)
. (7)

Now, from Lemma 10 and the above it follows that

φ(û, un) 6 sn,0φ(û, xn) +

m∑
i=1

sn,iφ(û, xn) = φ(û, xn). (8)
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From (6) and Lemma 2 it follows that

φ(û, zn) 6 φ
(
û, J−1(Jun − µBun)

)
= V (û, Jun − µBun)

6 V (û, Jun)− 2
〈
J−1(Jun − µBun)− û, µBun

〉
= φ(û, un) + 2

〈
J−1(Jun − µBun)− J−1(Jun), −µBun

〉
− 2µ〈un − û, Bun〉. (9)

By Lemma 4 and our assumptions, we obtain that

2
〈
J−1(Jun − µBun)− J−1(Jun), −µBun

〉
6 2
∥∥J−1(Jun − µBun)− J−1(Jun)∥∥‖−µBun‖

6
4µ2

c2
‖Bun‖2 6

4µ2

c2
‖Bun −Bû‖2. (10)

Since û ∈ VI (C,B) and B is β-inverse strongly monotone, it follows that

−2µ〈un − û, Bun〉
= −2µ〈un − û, Bun −Bû〉 − 2µ〈un − û, Bû〉
6 −2µ〈un − û, Bun −Bû〉 6 −2µβ‖Bun −Bû‖2. (11)

Now, substituting (10) and (11) into (9) and using our assumptions, we obtain that

φ(û, zn) 6 φ(û, un) + 2µ

(
2µ

c2
− β

)
‖Bun −Bû‖2 6 φ(û, un). (12)

In a similar way, by repeating the above proof for the sequence {yn}, we conclude that

φ(û, yn) 6 φ(û, zn) + 2λ

(
2λ

c2
− α

)
‖Azn −Aû‖2 6 φ(û, zn). (13)

From (8), (12), and (13) we have

φ(û, yn) 6 φ(û, xn). (14)

It follows from (3) and the convexity of ‖·‖2 that

φ(û, wn) = φ

(
û, J−1

(
m∑
i=1

βn,iJQ
Mi

ξ zn +

m∑
i=1

γn,iJQ
Mi

ξ yn

))

6 ‖û‖2 − 2

m∑
i=1

βn,i
〈
û, JQMi

ξ zn
〉
− 2

m∑
i=1

γn,i
〈
û, JQMi

ξ yn
〉

+

m∑
i=1

βn,i
∥∥QMi

ξ zn
∥∥2 + m∑

i=1

γn,i
∥∥QMi

ξ yn
∥∥2

=

m∑
i=1

βn,iφ
(
û, QMi

ξ zn
)
+

m∑
i=1

γn,iφ
(
û, QMi

ξ yn
)
. (15)
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Now, by (8), (12), (13), (15), and Lemma 10, we have

φ(û, wn) 6
m∑
i=1

βn,iφ(û, zn) +

m∑
i=1

γn,iφ(û, yn) 6 φ(û, xn). (16)

From (3), (16), Lemma 2, the convexity of ‖·‖2, and the relatively nonexpansiveness of f
and T , we have that

φ(û, xn+1) 6 ‖û‖2 − 2αn,1〈û, Jfxn〉 − 2αn,2〈û, Jun〉
− 2αn,3〈û, JTyn〉 − 2αn,4〈û, Jwn〉
+ αn,1‖fxn‖2 + αn,2‖un‖2 + αn,3‖Tyn‖2 + αn,4‖wn‖2

= αn,1φ(û, fxn) + αn,2φ(û, un) + αn,3φ(û, Tyn) + αn,4φ(û, wn)

6 αn,1φ(û, xn) + αn,2φ(û, un) + αn,3φ(û, yn) + αn,4φ(û, wn) (17)
6 (αn,1 + αn,4)φ(û, xn) + αn,2φ(û, un) + αn,3φ(û, yn). (18)

Therefore, by (8), (14), (18), and condition (i), we have

φ(û, xn+1) 6 φ(û, xn).

This show that {φ(û, xn)} is bounded and limn→+∞ φ(û, xn) exists. It follows from (4)
that {xn} is bounded. Now, by (8), (12), (13), (16), and relatively nonexpansiveness of
f and T , we have that the sequences {un}, {zn}, {yn}, {wn}, {fxn}, and {Tyn} are
bounded.

Next, by (7), (14), (18), and Lemma 10, we conclude that

φ(û, xn+1) 6 (1− αn,2)φ(û, xn) + αn,2φ(û, un)

6 (1− αn,2)φ(û, xn)

+ αn,2

(
sn,0φ(û, xn) +

m∑
i=1

sn,iφ
(
û, QMi

ξ xn
))

6 (1− αn,2)φ(û, xn)

+ αn,2

(
sn,0φ(û, xn) +

m∑
i=1

sn,i
[
φ(û, xn)− φ

(
QMi

ξ xn, xn
)])

= φ(û, xn)− αn,2
m∑
i=1

sn,iφ
(
QMi

ξ xn, xn
)
. (19)

Now, since {φ(û, xn)} is convergent, it follows from (19), condition (i), and our assump-
tions that limn→+∞ φ(QMi

ξ xn, xn) = 0 for each i = 1, 2, . . . ,m. Hence, from Lemma 1
we have that

lim
n→+∞

∥∥QMi

ξ xn − xn
∥∥ = 0 (20)
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for each i = 1, 2, . . . ,m. It follows from (5), (20), the boundedness of the sequences {xn}
and {QMi

ξ xn} for each i = 1, 2, . . . ,m, and using uniformly norm-to-norm continuity of
J on bounded sets, that

lim
n→+∞

φ
(
xn, Q

Mi

ξ xn
)
= 0 (21)

for each i = 1, 2, . . . ,m. By (8), (12), (14), (15), (17), and Lemma 10, we conclude that

φ(û, xn+1) 6 (1− αn,4)φ(û, xn) + αn,4φ(û, wn)

6 (1− αn,4)φ(û, xn)

+ αn,4

(
m∑
i=1

βn,iφ(û, Q
Mi

ξ zn) +

m∑
i=1

γn,iφ
(
û, QMi

ξ yn
))

6 (1− αn,4)φ(û, xn)

+ αn,4

(
m∑
i=1

βn,i
[
φ(û, zn)− φ

(
QMi

ξ zn, zn
)]

+

m∑
i=1

γn,i
[
φ(û, yn)− φ

(
QMi

ξ yn, yn
)])

= φ(û, xn)− αn,4
m∑
i=1

βn,iφ
(
QMi

ξ zn, zn
)

− αn,4
m∑
i=1

γn,iφ
(
QMi

ξ yn, yn
)
.

Hence, from (4), the above and our assumptions we obtain

φ(û, xn+1) 6 φ(û, xn)− αn,4
m∑
i=1

βn,iφ(Q
Mi

ξ zn, zn) (22)

and

φ(û, xn+1) 6 φ(û, xn)− αn,4
m∑
i=1

γn,iφ(Q
Mi

ξ yn, yn). (23)

Now, by (22), (23), condition (i), and the same techniques used for proving (20), we
conclude that

lim
n→+∞

∥∥QMi

ξ zn − zn
∥∥ = 0, lim

n→+∞

∥∥QMi

ξ yn − yn
∥∥ = 0 (24)

for each i = 1, 2, . . . ,m. From (5), (24), and the uniformly norm-to-norm continuity of
J on bounded sets we have that

lim
n→+∞

φ
(
zn, Q

Mi

ξ zn
)
= 0, lim

n→+∞
φ
(
yn, Q

Mi

ξ yn
)
= 0 (25)

for each i = 1, 2, . . . ,m.
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Let r1 = supn{‖fxn‖, ‖un‖}. Hence, by Lemma 5, there exists a continuous strictly
increasing convex function gr1 : [0, 2r1]→ [0,+∞) such that gr1(0) = 0, and using (8),
(14), (16), the convexity of ‖·‖2, and the condition of relatively nonexpansiveness of f
and T , we obtain that

φ(û, xn+1) 6 ‖û‖2 − 2〈û, αn,1Jfxn + αn,2Jun + αn,3JTyn + αn,4Jwn〉
+ ‖αn,1Jfxn + αn,2Jun + αn,3JTyn + αn,4Jwn‖2

6 ‖û‖2 − 2αn,1〈û, Jfxn〉 − 2αn,2〈û, Jun〉 − 2αn,3〈û, JTyn〉
− 2αn,4〈û, Jwn〉+ αn,1‖fxn‖2 + αn,2‖un‖2 + αn,3‖Tyn‖2

+ αn,4‖wn‖2 − αn,1αn,2gr1
(
‖Jfxn − Jun‖

)
6 αn,1φ(û, fxn) + αn,2φ(û, un) + αn,3φ(û, Tyn) + αn,4φ(û, wn)

− αn,1αn,2gr1
(
‖Jfxn − Jun‖

)
6 αn,1φ(û, xn) + αn,2φ(û, un) + αn,3φ(û, yn) + αn,4φ(û, wn)

− αn,1αn,2gr1
(
‖Jfxn − Jun‖

)
6 φ(û, xn)− αn,1αn,2gr1

(
‖Jfxn − Jun‖

)
. (26)

Let r2 = supn{‖un‖, ‖Tyn‖}. Then, in a similar way as above, there exists a continuous
strictly increasing convex function gr2 : [0, 2r2]→ [0,+∞) with gr2(0) = 0 such that

φ(û, xn+1) 6 φ(û, xn)− αn,2αn,3gr2
(
‖Jun − JTyn‖

)
. (27)

Therefore, it follows from (26) that

αn,1αn,2gr1
(
‖Jfxn − Jun‖

)
6 φ(û, xn)− φ(û, xn+1).

Hence, from condition (i) we conclude that

lim
n→+∞

gr1
(
‖Jfxn − Jun‖

)
= 0.

Moreover, from the fact that gr1 is a continuous function we have

gr1

(
lim

n→+∞
‖Jfxn − Jun‖

)
= lim
n→+∞

gr1
(
‖Jfxn − Jun‖

)
= 0 = gr1(0),

so
lim

n→+∞
‖Jfxn − Jun‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have that

lim
n→+∞

‖fxn − un‖ = 0. (28)

Now, from (27), condition (i), and a similar technique as above we conclude that

lim
n→+∞

‖un − Tyn‖ = 0. (29)

Nonlinear Anal. Model. Control, 31(Online First):1–25, 2026

https://doi.org/10.15388/namc.2026.31.44410


12 M. Ghadampour et al.

Then from (5), (28), (29), the uniformly norm-to-norm continuity of J on bounded sets,
and the boundedness of the sequences {fxn}, {un} and {Tyn} we have that

lim
n→+∞

φ(un, fxn) = 0, lim
n→+∞

φ(un, T yn) = 0. (30)

Using our assumptions, we obtain from (21) and Lemma 2 that

φ(xn, un) 6 φ

(
xn, J

−1

(
sn,0Jxn +

m∑
i=1

sn,iJQ
Mi

ξ xn

))

6 ‖xn‖2 − 2sn,0〈xn, Jxn〉 − 2

m∑
i=1

sn,i
〈
xn, JQ

Mi

ξ xn
〉

+ sn,0‖xn‖2 +
m∑
i=1

sn,i
∥∥QMi

ξ xn
∥∥2

= sn,0φ(xn, xn) +

m∑
i=1

sn,iφ
(
xn, Q

Mi

ξ xn
)

=

m∑
i=1

sn,iφ
(
xn, Q

Mi

ξ xn
)
→ 0 as n→ +∞.

Then from Lemma (1) we conclude that

lim
n→+∞

‖xn − un‖ = 0. (31)

By (8), (12), and (13), we obtain that

φ(û, yn) 6 φ(û, xn) + 2µ

(
2µ

c2
− β

)
‖Bun −Bû‖2. (32)

Therefore, from (8), (18), and (32) we have

φ(û, xn+1) 6 (αn,1 + αn,4)φ(û, xn) + αn,2φ(û, un) + αn,3φ(û, yn)

6 (αn,1 + αn,4)φ(û, xn) + αn,2φ(û, un)

+ αn,3

(
φ(û, xn) + 2µ

(
2µ

c2
− β

)
‖Bun −Bû‖2

)
6 φ(û, xn) + 2µ

(
2µ

c2
− β

)
‖Bun −Bû‖2.

Hence,

2µ

(
β − 2µ

c2

)
‖Bun −Bû‖2 6 φ(û, xn)− φ(û, xn+1). (33)

Since {φ(û, xn)} converges, it follows from (33) and (ii) that

lim
n→+∞

‖Bun −Bû‖2 = 0. (34)
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In a similar way as above, from (8), (12), (13), and (18) we have

φ(û, xn+1) 6 (αn,1 + αn,4)φ(û, xn) + αn,2φ(û, un) + αn,3φ(û, yn)

6 (αn,1 + αn,4)φ(û, xn) + αn,2φ(û, un)

+ αn,3

(
φ(û, xn) + 2λ

(
2λ

c2
− α

)
‖Azn −Aû‖2

)
6 φ(û, xn) + 2µ

(
2λ

c2
− α

)
‖Azn −Aû‖2,

so,
lim

n→+∞
‖Azn −Aû‖2 = 0. (35)

Therefore, from (6), (34), and Lemmas 2 and 4 we get

φ(un, zn) 6 φ
(
un, J

−1(Jun − µBun)
)
= V (un, Jun − µBun)

6 V (un, Jun)− 2
〈
J−1(Jun − µBun)− un, µBun

〉
= φ(un, un)− 2

〈
J−1(Jun − µBun)− J−1(Jun), µBun

〉
6 2
∥∥J−1(Jun − µBun)− J−1(Jun)∥∥‖µBun‖

6
4µ2

c2
‖Bun‖2 6

4µ2

c2
‖Bun −Bû‖2 → 0 as n→ +∞.

Then, using Lemma 1, we obtain

lim
n→+∞

‖un − zn‖ = 0. (36)

Also, in a similar way as above, from (6), (35), and Lemmas 2 and 4 we have

φ(zn, yn) 6 φ
(
zn, J

−1(Jzn − λAzn)
)

6
4λ2

c2
‖Azn −Aû‖2 → 0 as n→ +∞.

Then, using Lemma 1, we get

lim
n→+∞

‖zn − yn‖ = 0. (37)

Now, from (24) and (37) we obtain that

lim
n→+∞

∥∥zn −QMi

ξ yn
∥∥ = 0 (38)

for each i = 1, 2, . . . ,m. Therefore, using (5), (38), and the uniformly norm-to-norm
continuity of J on bounded sets, we have that

lim
n→+∞

φ
(
zn, Q

Mi

ξ yn
)
= 0 (39)

Nonlinear Anal. Model. Control, 31(Online First):1–25, 2026

https://doi.org/10.15388/namc.2026.31.44410


14 M. Ghadampour et al.

for i = 1, 2, . . . ,m. It follows from (3), (25), (39), and the convexity of ‖·‖2 that

φ(zn, wn) = φ(zn, J
−1

(
m∑
i=1

βn,iJQ
Mi

ξ zn +

m∑
i=1

γn,iJQ
Mi

ξ yn)

)

6 ‖zn‖2 − 2

m∑
i=1

βn,i
〈
zn, JQ

Mi

ξ zn
〉
− 2

m∑
i=1

γn,i
〈
zn, JQ

Mi

ξ yn
〉

+

m∑
i=1

βn,i
∥∥QMi

ξ zn
∥∥2 + m∑

i=1

γn,i
∥∥QMi

ξ yn
∥∥2

=

m∑
i=1

βn,iφ
(
zn, Q

Mi

ξ zn
)
+

m∑
i=1

γn,iφ
(
zn, Q

Mi

ξ yn
)
→ 0 as n→ +∞.

Now, from Lemma 1 we have that limn→+∞ ‖zn − wn‖ = 0. Therefore, it is evident
from (36) that limn→+∞ ‖un − wn‖ = 0. Then from (4) and the continuity of the
mapping J we have

lim
n→+∞

φ(un, wn) = 0. (40)

From (30), (40), and our assumptions we conclude that

φ(un, xn+1) 6 ‖un‖2 − 2αn,1〈un, Jfxn〉 − 2αn,2〈un, Jun〉
− 2αn,3〈un, JTyn〉 − 2αn,4〈un, Jwn〉
+ αn,1‖fxn‖2 + αn,2‖un‖2 + αn,3‖Tyn‖2 + αn,4‖wn‖2

= αn,1φ(un, fxn) + αn,2φ(un, un) + αn,3φ(un, T yn)

+ αn,4φ(un, wn)→ 0 as n→ +∞.

Therefore, by Lemma 1, we have

lim
n→+∞

‖xn+1 − un‖ = 0. (41)

From (31) and (41) we obtain that

‖xn+1 − xn‖ 6 ‖xn+1 − un‖+ ‖un − xn‖ → 0 as n→ +∞.

Thus {xn} is a Cauchy sequence, hence {xn} converges strongly to a point q ∈ C. Hence,
from (31), (36), and (37), we conclude that {un}, {yn} and {zn} converge to q.

Next, we prove that q ∈ VI (C,B). Consider the operator B̃ ⊂ X ×X∗ as follows:

B̃ν =

{
Bν +NCν, ν ∈ C,
∅, ν /∈ C.

(42)

It is clear from Lemma 8 that B̃ is maximal monotone and B̃−1(0) = VI (C,B). Now,
let (ν, ω) ∈ G(B̃) with ω ∈ B̃ν = Bν +NC(ν). Hence ω −Bν ∈ NC(ν), therefore,

〈ν − zn, ω −Bν〉 > 0. (43)
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Now, we have from Lemma 3 that 〈ν − zn, J(J−1(Jun − µBun))− Jzn〉 6 0. Then〈
ν − zn, Bun +

Jzn − Jun
µ

〉
> 0. (44)

From (43), (44), and the definition of B we conclude that

〈ν − zn, ω〉

> 〈ν − zn, Bν〉 −
〈
ν − zn, Bun +

Jzn − Jun
µ

〉
= 〈ν − zn, Bν −Bzn〉+ 〈ν − zn, Bzn〉 −

〈
ν − zn, Bun +

Jzn − Jun
µ

〉
> 〈ν − zn, Bzn −Bun〉 −

〈
ν − zn,

Jzn − Jun
µ

〉
> −‖ν − zn‖

(
1

β
‖zn − un‖ −

1

µ
‖Jzn − Jun‖

)
. (45)

Taking n → +∞ and using the uniformly norm-to-norm continuity of J on bounded
sets and (36), we obtain 〈ν − q, ω〉 > 0. Now, from the maximal monotonicity of B̃ we
conclude q ∈ B̃−1(0) = VI (C,B).

Next, we show that q ∈ VI (C,A). Let Ã ⊂ X × X∗ be an operator defined as
follows:

Ãι =

{
Aι+NCι, ι ∈ C,
∅, ι /∈ C.

(46)

We know from Lemma 8 that Ã is maximal monotone and also Ã−1(0) = VI (C,A).
Suppose that (ι, θ) ∈ G(Ã) with θ ∈ Ãι = Aι + NC(ι). Then θ − Aι ∈ NC(ι). In
a similar way as in (45), we obtain that

〈ι− yn, θ〉 > −‖ι− yn‖
(
1

α
‖yn − zn‖ −

1

λ
‖Jyn − Jzn‖

)
. (47)

Taking the limit in the above inequality as n → +∞, we deduce that 〈ι − q, θ〉 > 0.
Hence, from the maximal monotonicity of Ã we imply that q ∈ Ã−1(0) = VI (C,A).

Next, we prove that q ∈ ∩mi=1F (Q
Mi

ξ ). It follows from (20) and the uniformly
continuity of J on bounded subsets of X that

lim
n→+∞

∥∥JQMi

ξ xn − Jxn
∥∥ = 0

for each i = 1, 2, . . . ,m. Hence, by Definition 1, we have JQMi

ξ xn + ξMiQ
Mi

ξ xn =

Jxn. Therefore, there exists hn,i ∈ MiQ
Mi

ξ xn such that hn,i = (Jxn − JQMi

ξ xn)/ξ.
So, by the above observation, hn,i → 0 as n → +∞ for each i = 1, 2, . . . ,m. Then
from (20) it is clear that QMi

ξ xn ⇀ q as n → +∞, and using Lemma 9, we have that
0 ∈Miq for each i = 1, 2, . . . ,m, i.e., q ∈ ∩mi=1M

−1
i 0 = ∩mi=1F (Q

Mi

ξ ).
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Next, we show that q ∈ F (f). From (28) and (31) we conclude that

lim
n→+∞

‖fxn − xn‖ = 0.

Then q is an asymptotic fixed point of f . Since f is a relatively nonexpansive mapping,
F̂ (f) = F (f). Therefore, q ∈ F (f).

Next, we prove that q ∈ F (T ). From (29), (36), and (37) we obtain

lim
n→+∞

‖Tyn − yn‖ = 0.

Hence q is an asymptotic fixed point of T . Now, since T is a relatively nonexpansive
mapping, F̂ (T ) = F (T ). So, q ∈ F (T ). Then

q = Π
F (T )∩(∩mi=1F (Q

Mi
ξ ))∩VI (C,A)∩VI (C,B)

◦ f(q).

This completes the proof.

Theorem 2. Let X , X∗, C, A, B, f , T , and Mi for i = 1, 2, . . . ,m be as in Theorem 1.
Suppose that g is a bifunction from C×C to R, which satisfies conditions (A1)–(A4). Let
Γ = F (f) ∩ F (T ) ∩ (∩mi=1F (Q

Mi

ξ )) ∩ VI (C,A) ∩ VI (C,B) ∩ EP(g) 6= ∅. Suppose
that {xn} is a sequence generated by x1 ∈ C and

vn ∈ C: g(vn, y) + 〈Avn, y − vn〉

+
1

rn
〈y − vn, Jvn − Jxn〉 > 0 for all y ∈ C,

kn = ΠCJ
−1(Jvn − µBvn),

un = ΠCJ
−1

(
sn,0Jxn +

m∑
i=1

sn,iJQ
Mi

ξ xn

)
,

Qn =
{
ι ∈ C: φ(ι, kn) 6 φ(ι, xn)

}
,

zn = ΠQnJ
−1(Jun − µBun), yn = ΠCJ

−1(Jzn − λAzn),

wn = J−1

(
m∑
i=1

βn,iJQ
Mi

ξ zn +

m∑
i=1

γn,iJQ
Mi

ξ yn

)
,

hn = J−1[αn,1Jfxn + αn,2Jun + αn,3Jkn + αn,4JTyn + αn,5Jwn],

xn+1 = ΠChn,

(48)

where rn ∈ [a,+∞) for some a > 0, {βn,i}mi=1, {γn,i}mi=1, and {sn,i}mi=0 are real
sequences in [a, b] ⊂ (0, 1),

∑m
i=1(βn,i + γn,i) = 1, and

∑m
i=0 sn,i = 1. Let µ, λ, and

{αn,i}5i=1 satisfy the following conditions:

(i) {αn,i}5i=1 ⊂ (0, 1),
∑5
i=1 αn,i = 1, lim infn→+∞ αn,1αn,2 > 0, and

lim infn→+∞ αn,2αn,4 > 0.
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(ii) λ and µ are real numbers such that 0 < λ < c2α/2 and 0 < µ < c2β/2, where
1/c is the 2-uniformly convexity constant of X .

Then {xn} converges strongly to

q = Π
F (T )∩(∩ni=1F (Q

Mi
ξ ))∩VI (C,A)∩VI (C,B)∩EP(g)

◦ f(q).

Proof. First, we prove that {xn} is well defined. Let κ ∈ Γ . It is clear from Lemma 7
and algorithm (48) that vn = Krnxn, and hence,

φ(κ, vn) 6 φ(κ, xn). (49)

From (6) and Lemma 2 we have that

φ(κ, kn) 6 φ(κ, J−1(Jvn − µBvn)
)
= V (κ, Jvn − µBvn)

6 V (κ, Jvn)− 2
〈
J−1(Jvn − µBvn)− κ, µBvn

〉
= φ(κ, vn)− 2µ〈vn − κ, Bvn〉
+ 2
〈
J−1(Jvn − µBvn)− J−1(Jvn), −µBvn

〉
. (50)

From the β-inverse strongly monotonicity of B and the fact that κ ∈ VI (C,B) we have
that

−2µ〈vn − κ, Bvn〉 = −2µ〈vn − κ, Bvn −Bκ〉 − 2µ〈vn − κ, Bκ〉
6 −2µβ‖Bvn −Bκ‖2. (51)

By Lemma 4 and the condition ‖Bx‖ 6 ‖Bx−Bκ‖ for all x ∈ C, it follows that

2
〈
J−1(Jvn − µBvn)− J−1(Jvn), −µBvn

〉
6 2
∥∥J−1(Jvn − µBvn)− J−1(Jvn)∥∥‖µBvn‖

6
4µ2

c2
‖Bvn‖2 6

4µ2

c2
‖Bvn −Bκ‖2. (52)

Hence, substituting (51) and (52) into (50), we have that

φ(κ, kn) 6 φ(κ, vn) + 2µ

(
2µ

c2
− β

)
‖Bvn −Bκ‖2 6 φ(κ, vn). (53)

Therefore, it follows from (49) and (53) that

φ(κ, kn) 6 φ(κ, xn). (54)

This shows that κ ∈ Qn, hence {xn} is well defined.
Next, we show that Qn is a closed and convex subset of C for all n ∈ N. To this end,

using the definition φ, it is clear that the inequality φ(ι, kn) 6 φ(ι, xn) is equivalent to

2〈ι, Jxn − Jkn〉 6 ‖xn‖2 − ‖kn‖2. (55)

Hence, it is clear from (55) that Qn is closed and convex for each n ∈ N.
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Let û ∈ Γ . Note that using Lemma 2, the inequalities (8), (13), (14), and (16) hold
for the algorithm (48). Now, from (3), (14), (16), (49), Lemma 2, the convexity of ‖·‖2,
and the relatively nonexpansiveness of f and T it follows that

φ(û, xn+1) 6 ‖û‖2 − 2αn,1〈û, Jfxn〉 − 2αn,2〈û, Jun〉
− 2αn,3〈û, Jkn〉 − 2αn,4〈û, JTyn〉 − 2αn,5〈û, Jwn〉
+ αn,1‖fxn‖2 + αn,2‖un‖2 + αn,3‖kn‖2

+ αn,4‖Tyn‖2 + αn,5‖wn‖2

= αn,1φ(û, fxn) + αn,2φ(û, un) + αn,3φ(û, kn)

+ αn,4φ(û, Tyn) + αn,5φ(û, wn)

6 α1,nφ(û, xn) + αn,2φ(û, un) + αn,3φ(û, kn)

+ αn,4φ(û, yn) + αn,5φ(û, wn)

6 (1− αn,2)φ(û, xn) + αn,2φ(û, un). (56)

By (8) and (56), we have
φ(û, xn+1) 6 φ(û, xn).

This demonstrates that {φ(û, xn)} is bounded and limn→+∞ φ(û, xn) exists. It follows
from (4) that {xn} is bounded. Therefore, by (8), (12), (13), (49), (53), and the relatively
nonexpansiveness of f and T , we conclude that {un}, {zn}, {yn}, {vn}, {kn}, {fxn},
and {Tyn} are bounded.

Let r3 = supn{‖fxn‖, ‖un‖}. Hence, by Lemma 5, there exists a continuous strictly
increasing convex function gr3 : [0, 2r3]→ [0,+∞) such that gr3(0) = 0, and using (8),
(14), (16), (54), the convexity of ‖·‖2, and the condition relatively nonexpansiveness of f
and T , we have

φ(û, xn+1) 6 ‖û‖2 − 2αn,1〈û, Jfxn〉 − 2αn,2〈û, Jun〉 − 2αn,3〈û, Jkn〉
− 2αn,4〈û, JTyn〉 − 2αn,5〈û, Jwn〉+ αn,1‖fxn‖2

+ αn,2‖un‖2 + αn,3‖kn‖2 + αn,4‖Tyn‖2 + αn,5‖wn‖2

− αn,1αn,2gr3
(
‖Jfxn − Jun‖

)
= αn,1φ(û, fxn) + αn,2φ(û, un) + αn,3φ(û, kn) + αn,4φ(û, Tyn)

+ αn,5φ(û, Jwn)− αn,1αn,2gr3
(
‖Jfxn − Jun‖

)
6 αn,1φ(û, xn) + αn,2φ(û, un) + αn,3φ(û, kn) + αn,4φ(û, yn)

+ αn,5φ(û, wn)− αn,1αn,2gr3
(
‖Jfxn − Jun‖

)
6 φ(û, xn)− αn,1αn,2gr3

(
‖Jfxn − Jun‖

)
. (57)

Let r4 = supn{‖un‖, ‖Tyn‖}. Then, in a similar way as above, there exists a continuous
strictly increasing convex function gr4 : [0, 2r4]→ [0,+∞) with gr4(0) = 0 such that

φ(û, xn+1) 6 φ(û, xn)− αn,2αn,4gr4
(
‖Jun − JTyn‖

)
. (58)

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


New strong convergence algorithms for general equilibrium 19

Hence, by (57), we have that

αn,1αn,2gr3
(
‖Jfxn − Jun‖

)
6 φ(û, xn)− φ(û, xn+1).

Now, by condition (i), we have that

lim
n→+∞

gr3
(
‖Jfxn − Jun‖

)
= 0.

Therefore,

gr3

(
lim

n→+∞
‖Jfxn − Jun‖

)
= lim
n→+∞

gr3
(
‖Jfxn − Jun‖

)
= 0 = gr3(0)

because gr3 is a continuous function. Then

lim
n→+∞

‖fxn − un‖ = 0. (59)

Similarly, from (58) we obtain that

lim
n→+∞

‖un − Tyn‖ = 0. (60)

It follows from (5), (59), and (60) that

lim
n→+∞

φ(un, fxn) = 0, lim
n→+∞

φ(un, T yn) = 0. (61)

Note that equalities (31), (36), and (40) hold for the algorithm (48). From (31) and
(36) we have that

lim
n→+∞

‖zn − xn‖ = 0. (62)

Then, using (5), we have that limn→+∞ φ(zn, xn) = 0. Since zn ∈ Qn, we have
limn→ φ(zn, kn) = 0. Hence, from Lemma 1 we have

lim
n→+∞

‖zn − kn‖ = 0. (63)

Then it follows from (36) that limn→+∞ ‖un − kn‖ = 0. So, by (5), we obtain that

lim
n→+∞

φ(un, kn) = 0. (64)

Now, we conclude from (40), (61), and (64) that

φ(un, xn+1) 6 ‖un‖2 − 2αn,1〈un, Jfxn〉 − 2αn,2〈un, Jun〉 − 2αn,3〈un, Jkn〉
− 2αn,4〈un, JTyn〉 − 2αn,5〈un, Jwn〉+ αn,1‖fxn‖2

+ αn,2‖un‖2 + αn,3‖kn‖2 + αn,4‖Tyn‖2 + αn,5‖wn‖2

= αn,1φ(un, fxn) + αn,2φ(un, un) + αn,3φ(un, kn)

+ αn,4φ(un, T yn) + αn,5φ(un, wn)→ 0 as n→ +∞.

Hence, by Lemma 1, we have

lim
n→+∞

‖un − xn+1‖ = 0. (65)
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Now, we obtain from (31) and (65) that

lim
n→+∞

‖xn+1 − xn‖ = 0.

Therefore, {xn} is a Cauchy sequence. So, {xn} converges strongly to a point q ∈ C.
Moreover, by (31), (36), (37), (59), and (60), we conclude that {un}, {zn}, {yn}, {fxn},
and {Tyn} strongly converge to q. It is clear that relations (42)–(47) are valid for al-
gorithm (48). Hence, as in the proof of Theorem 1, we conclude that q ∈ VI (C,A) ∩
VI (C,B).

Next, we show that q ∈ F (QMi

ξ ) for each i = 1, 2, . . . ,m. From (7), (14), (56),
Lemma 10 and similar to (19), we have that

φ(û, xn+1) 6 φ(û, xn)− αn,2
m∑
i=1

sn,iφ
(
QMi

ξ xn, xn
)
.

Therefore, equality (20) is valid for algorithm (48). So, as in the proof of Theorem 1, we
see that q ∈ ∩mi=1F (Q

Mi

ξ ).
Next, we prove that q ∈ F (f). It follows from (31) and (59) that

lim
n→+∞

‖fxn − xn‖ = 0. (66)

Moreover, xn ⇀ q, hence, by (66), we conclude that q is an asymptotically fixed point
of f . On the other hand, q ∈ F̂ (f) = F (f) because f is a relatively nonexpansive
mapping.

Next, we show that q ∈ F (T ). From (36), (37), and (60) we have

lim
n→+∞

‖Tyn − yn‖ = 0.

Hence q is an asymptotic fixed point of T . Now, since T is a relatively nonexpansive
mapping, F̂ (T ) = F (T ). So, q ∈ F (T ).

Finally, we prove that q ∈ EP(g). From (62) and (63) we obtain that

lim
n→+∞

‖xn − kn‖ = 0. (67)

Let r5 = supn{‖vn‖, ‖xn‖}. Hence, from Lemma 6 there exists a continuous, convex,
and strictly increasing function gr5 : [0, 2r5] −→ [0,+∞) such that gr5(0) = 0 and

gr5
(
‖vn − xn‖

)
6 φ(vn, xn). (68)

Now, by (53), (67), (68), Lemma 7, and the fact that vn = Krnxn, we conclude that

gr5
(
‖vn − xn‖

)
6 φ(vn, xn) 6 φ(û, xn)− φ(û, vn)
6 φ(û, xn)− φ(û, kn) = ‖xn‖2 − ‖kn‖2 − 2〈û, Jxn − Jkn〉

6
(
‖xn − kn‖+ ‖kn‖

)2 − ‖kn‖2 − 2〈û, Jxn − Jkn〉
6 ‖xn − kn‖2 + 2‖kn‖‖xn − kn‖+ 2‖û‖‖Jxn − Jkn‖
→ 0 as n→ +∞.
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Since gr5 is a continuous strictly increasing convex function, ‖vn−xn‖ → 0 as n→ +∞.
So,

lim
n→+∞

‖Jvn − Jxn‖ = 0. (69)

From vn = Krnxn we have that g(vn, y)+〈Avn, y−vn〉+〈y−vn, Jvn−Jxn〉/rn > 0
for all y ∈ C. Moreover, by condition (A2), g(y, vn) 6 −g(vn, y) for all y ∈ C.
Therefore,

g(y, vn) 6 〈Avn, y − vn〉+
1

rn
〈y − vn, Jvn − Jxn〉

for all y ∈ C. Letting n→ +∞ and using (69) with condition (A4), we obtain

g(y, q) 6 〈Aq, y − q〉 (70)

for all y ∈ C. Assume that yt = ty + (1 − t)q for all y ∈ C and t ∈ (0, 1). By (70),
conditions (A1), (A4), the convexity of g, and the monotonicity of A, we have that

0 = g(yt, yt) + 〈Ayt, yt − yt〉
6 tg(yt, y) + (1− t)g(yt, q) +

〈
Ayt, ty + (1− t)q − yt

〉
= tg(yt, y) + (1− t)g(yt, q) + t〈Ayt, y − yt〉+ (1− t)〈Ayt, q − yt〉
= tg(yt, y) + (1− t)g(yt, q) + t〈Ayt, y − yt〉
+ (1− t)〈Ayt −Aq, q − yt〉+ (1− t)〈Aq, q − yt〉

6 tg(yt, y) + t〈Ayt, y − yt〉

for all y ∈ C. Hence 0 6 g(yt, y)+〈Ayt, y−yt〉. Letting t→ 0 and using condition (A3),
we conclude that 0 6 g(q, y)+〈Aq, y−q〉 for all y ∈ C. Then q ∈ EP(g). Therefore, q =
Π
F (T )∩(∩mi=1F (Q

Mi
ξ ))∩VI (C,A)∩VI (C,B)∩EP(g)

◦ f(q), and this completes the proof.

4 Numerical example and remark

Remark. If A = B = kI for a real number k > 0, X = R, and C is a nonempty
closed and convex subset of X , then Γ = {0} is the only case that |Ax| 6 |Ax − Au|
and |Bx| 6 |Bx − Bu| for all x ∈ C and u ∈ Γ . If also, A = B = 0 and Γ is
an arbitrary subset of C, then, obviously, the above conditions hold. We also refer the
readers to [9, p. 3686, Remark 3.4].

The following example illustrates the behavior of algorithm (48) of Theorem 2.

Example 1. Let X = R, C = [−5, 5], A = B = I , µ = λ = 1/3, c = 1, α = β = 1.
Suppose that f and T are self-mappings on C defined by f(x) = T (x) = x/3 for all
x ∈ C. Consider the function g : C × C → R defined by

g(u, y) := 12y2 + 9uy − 21u2
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for all u, y ∈ C. It is clear that conditions (A1)–(A4) are satisfied. Suppose that x ∈ X ,
r > 0, and v ∈ Krx. Then, by Lemma 7, it follows that

g(v, y) + 〈Av, y − v〉+ 1

r
〈y − v, Jv − Jx〉 > 0

for all y ∈ C, i.e.,

0 6 12ry2 + 9rvy − 21rv2 + rvy − rv2 + vy − v2 + vx− xy
= 12ry2 + (10rv + v − x)y − 22rv2 − v2 + vx.

Let a = 12r, b = 10rv + v − x and c = −22rv2 − v2 + vx. Then we have that
∆ = b2 − 4ac 6 0, i.e.,

0 > (10rv + v − x)2 − 48r
(
−22rv2 − v2 + vx

)
= 1156r2v2 + 68rv2 + v2 − 68rvx− 2vx+ x2

=
(
(34r + 1)v − x

)2
.

It follows that v = x/(34r + 1). Hence Krx = x/(34r + 1). Now, by Theorem 2,
we obtain that vn = xn/(34rn + 1). Since F (Krn) = {0}, from Lemma 7 we have
EP(g) = {0}.

Obviously, F (f) = {0} and φ(0, f(x)) 6 φ(0, x) for all x ∈ C. It is clear that
F̂ (f) = {0} = F (f). Therefore, f is a relatively nonexpansive mapping. Similarly, T
is a relatively nonexpansive mapping. Moreover, it is obvious that 0 ∈ VI (C, I). Now,
we define Mi : R → 2R by Mix = {2x} for each i = 1, 2, . . . ,m and ξ = 1/2, hence
QMi

ξ = x/2 for each i = 1, 2, . . . ,m. Clearly, 0 ∈ F (QMi

ξ ) for each i = 1, 2, . . . ,m.
Therefore,

0 = Π{0} ◦ f(0) = Π
F (T )∩VI (C,A)∩VI (C,B)∩(∩mi=1F (Q

Mi
ξ )∩EP(g)

◦ f(0).

Next, we assume that m = 3. For each x ∈ X , define the mapping Mi : R → 2R

by Mix = {2x} and let ξ = 1/2, hence QMi

ξ = x/2. We choose αn,1 = 1/5 + 1/(8n),
αn,2 = 1/5−1/(6n), αn,3 = 1/5+1/(12n), αn,4 = 1/5−1/(6n), αn,5 = 1/5+1/(8n)
and sn,0 = sn,1 = sn,2 = sn,3 = 1/4, βn,1 = βn,2 = βn,3 = γn,1 = γn,2 = γn,3 =
1/6, rn = 1/34 for all n ∈ N and v0 = 0. Therefore, {αn,i}5i=1 satisfies the conditions
of Theorem 2. We know that xn ∈ C, hence

kn =
1

3
xn, un =

5

8
xn, Qn =

{
ι ∈ C: |ι− kn| 6 |ι− xn|

}
,

zn =
5

12
xn, yn =

5

18
xn, wn =

25

144
xn,

xn+1 =

(
1

5
+

1

8n

)
1

3
xn +

(
1

5
− 1

6n

)
5

8
xn +

(
1

5
+

1

12n

)
5

8
xn

+

(
1

5
− 1

6n

)(
1

3

)
5

18
xn +

(
1

5
+

1

8n

)
25

144
xn.

See Fig. 1 for the value x1 = 3.
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Figure 1. Convergence behavior of generated sequences by Example 1.
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