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Abstract. In this paper, we introduce two new algorithms for solving variational inequalities in
Banach spaces. Our aim is finding a common element of the solution set of variational inequalities
(for two inverse-strongly monotone operators) and an equilibrium problem and the set of fixed
points of two relatively nonexpansive mappings and a family of resolvent operators. Then the strong
convergence of the sequences generated by these algorithms to this element will be proved under
suitable conditions. Finally, we provide a numerical example to illustrate our main results.

Keywords: relatively nonexpansive mapping, fixed point problem, equilibrium problem, inverse-
strongly monotone operator, maximal monotone operator.

1 Introduction

It is well known that variational inequalities are useful and important tools for the study of
some branches of applied sciences, and they arise, for example, in optimization problems,
equilibrium models, Nash equilibrium problems in noncooperative games, partial differ-
ential equation problems, and other problems (see [17,24]). One of the most important
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methods for solving variational inequalities is the extragradient method introduced by Ko-
rpelevich [14] in a finite-dimensional space, which requires two projections onto a closed
and convex set and two evaluations of an operator per each iteration. Many authors
extended this method to infinite-dimensional spaces (see [7, 10,24]).

The equilibrium problem is very general because it includes many well-known prob-
lems such as variational inequality problems, saddle point problems, etc. (see [6, 11]).
Several methods have been proposed to solve the equilibrium problem in Hilbert space
(see [4, 15]), and some authors obtained weak and strong convergence algorithms for
finding a common element of the set of solutions of an equilibrium problem and the set of
fixed points of a nonexpansive mapping in a Hilbert space (see [20,21]). Then the authors
proved the strong convergence of the algorithms in a uniformly convex and uniformly
smooth Banach space (see [3]).

In this paper, motivated by Cai et al. [4] and Ghadampour et al. [8], using two inverse
strongly monotone operators and a family of resolvent operators, we present two new
hybrid algorithms. Then we show that our generated sequences are strongly convergent to
a common element of the solution set of two variational inequality problems and the fixed
point set of two relatively nonexpansion mappings and the fixed point set of a family of
resolvent operators and the solution set of the equilibrium problem.

2 Preliminaries
Suppose that C' is a nonempty closed convex subset of a real Banach space X with the
norm ||-|| and X * is the dual of X. The variational inequality problem (VI) is as follows:
e Find a point € C' such that
(Az,y—z) 20 forally e C,

where A is a mapping of C into X*, and (-, -) denotes the duality pairing. The
solution set of the variational inequality problem is denoted by VI(C, A).

The operator A : X — 2% is said to be
(i) monotone if (x —y, * —y*) > 0forall z,y € X and z* € Az, y* € Ay;
(ii) a-inverse strongly monotone if there exists a constant o > 0 such that

<.T—y7 x*—y*))a”x*—y*HQ, xayEXu x* €A$7 y* eAy?
(iii) L-Lipchitz continuous if there exists L > 0 such that
lz* —y*|| < Lz —y||, =z,y€ X, a* € Az, y* € Ay;

(iv) demiclosed if for all {z, } C X with z,, = zin X and y,, € Az,, withy,, = y
in X*, it follows that x € X and y € Ax.

A monotone mapping A is called maximal if its graph G(A) = {(z, Az): x € D(A)}
is not properly contained in the graph of any other monotone mapping. Clearly, the
monotone mapping A is maximal if and only if for (z, 2*) € X x X*, (z—y, *—y*) > 0
for each (y,y*) € G(A). Then it is implied that z* € Ax.

https://www.journals.vu.lt/nonlinear-analysis
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Let f : C' x C' — R be a bifunction. The equilibrium problem (EP) is as follows:

e Find x € C such that
flz,y) +(Az, y —x) >0 forally € C. (1)
The solution set of (1) is denoted by EP(f).

Let X be a real smooth Banach space with the norm ||-||, and let X* be the dual space
of X. A function ¢ : [0,2] — [0, 1] is said to be the modulus of convexity of X if

: lz + yll
o(e) = mf{l — o k<Ll <L flz -yl > e

for every ¢ € [0,2]. A Banach space X is said to be uniformly convex if and only if
d(g) > 0 for all ¢ > 0. It is well known that a uniformly convex Banach space has
the Kadec—Klee property, that is, z,, — w and ||z,| — ||u|| imply that z,, — wu (see
[18]). Let p be a fixed real number with p > 2. A Banach space X is called p-uniformly
convex [23] if there exists a constant ¢ > 0 such that § > ce? for all € € [0, 2]. The duality
mapping J : X — 2% is defined by

J(@) ={f € X" (z.f) = ll=|I* = | f1?}

for every x € X. Let S(X) = {z € X: |z|] = 1}. A Banach space X is said to
be smooth if for all x € S(X), there exists a unique functional j, € X* such that
(2, ja) = llz] and [l = 1 (see [1]).

The norm of X is said to be Gateaux differentiable if for each z,y € S(X), the limit

tull —
L e tyl ]
t—0 t

2

exists. In this case, X is said to be smooth, and X is called uniformly smooth if the
limit (2) is attained uniformly for all 2,y € S(X) [22]. If a Banach space X is uniformly
convex, then X is reflexive and strictly convex, and X* is uniformly smooth [1]. It is
well known that if X is a reflexive, strictly convex, and smooth Banach space and J* :
X* — X is the duality mapping on X*, then J~! = J* Also, if X is a uniformly
smooth Banach space, then J is uniformly norm-to-norm continuous on bounded sets of
X,and J~! = J* is also uniformly norm-to-norm continuous on bounded sets of X *.
Let X be a smooth Banach space, and let J be the duality mapping on X. The function
¢ : X x X — Ris defined by

oz, y) = ||o]> = 2(z, Jy) + [ly]|* forallz,y € X. 3)

Clearly, from (3) we can conclude that

(2l = 1) < d(z,9) < (I + oll)”. )

Nonlinear Anal. Model. Control, 31(Online First):1-25, 2026
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If X is a reflexive, strictly convex, and smooth Banach space, then, for all z,y € X,
¢(z,y) =0 ifandonlyifz =y.

Also, it is clear from the definition of the function ¢ that the following condition holds
forall z,y € X:

< iz = Jyll + lly = =[] (5)

Now, the function V : X x X* — R is defined as
V(z,a*) = [lz|* - 2(z, %) + [|l=*?

for all z € X and #* € X*. Moreover, V(z,2*) = ¢(z,J ta*) forall z € X and
x* € X*. If X is a reflexive strictly convex and smooth Banach space with X* as its
dual, then

V(z,z*) + 2<J_1x* -, y*> <Vix, 2" +y") (6)

forall x € X and all x*,y* € X* [13].

An operator A : C — X* is hemicontinuous at zy € C' if for any sequence {z,, }
converging to x along a line, the sequence { Az, } converges weakly to Az, i.e., Az, =
A(zo+t,x) = Axgast, — 0foreachx € C. The generalized projection I1¢ : X — C
is the mapping that assigns to each point z € X the minimizer of the functional ¢(y, x);
ie., IIcx = xg, where x is the solution of the minimization problem

The existence and uniqueness of the operator I/~ follow from the properties of the func-
tional ¢(x, y) and strict monotonicity of the mapping J [2]. Let C' be a nonempty closed
convex subset of X, and let 7" be a self mapping on C'. We denote the set of fixed points
of T by F(T), that is, F(T) = {& € C: © € Tz}. A point p € C is said to be an
asymptotically fixed point of T" if C' contains a sequence {x,}, which converges weakly
to p and T'x,, — &, — 0 [1]. The set of asymptotical fixed points of 7" will be denoted by
F(T). A mapping T from C into itself is called relatively nonexpansive if F'(T') = F(T')
and ¢(p, Tz) < ¢(p,x) foreach x € C and p € F(T). The asymptotic behavior of
a relatively nonexpansive mapping was studied in [5].
We need the following lemmas for proving our main results.

Lemma 1. (See [12].) Let X be a smooth and uniformly convex Banach space, and let
{zn} and {y,} be two sequences of X. If ¢(xn,yn) — 0 and either {x,} or {y,} is
bounded, then x.,, — y, — 0.

Lemma 2. (See [2].) Let C be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space X, and let y € X. Then

oz, Hoy) + o(Ilcy,y) < ¢(z,y) forallz € C.

https://www.journals.vu.lt/nonlinear-analysis
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Lemma 3. (See [2].) Let C' be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space X, and let x € X, z € C. Then

z=Ilcx ifandonlyif (y— 2z, Jr—Jz) <0 forallye C.

Lemma 4. (See [27].) Let X be a 2-uniformly convex and smooth Banach space. Then,
forall x,y € X, we have that

2
lz =yl < Z 2 = Jyll,

where 1/c (0 < ¢ < 1) is the 2-uniformly convex constant of X.

Lemma 5. (See [27].) Let X be a uniformly convex Banach space and r > 0. Then there
exists a continuous strictly increasing convex function g : [0,2r] — [0, +00) such that
g(0) =0 and
2
[tz + (1 = O)y||” < tlll® + (1 = )llyl* - (1 — 1)
x g(|lz —yll) forallz,y € B,(0), t €0,1]

where B, (0) = {z € E: ||z]| < r}.

Lemma 6. (See [12].) Let X be a uniformly convex Banach space and r > 0. Then there
exists a continuous strictly increasing convex function g : [0,2r] — [0,400) such that
9(0) = 0 and
9(lz = yll) < ¢(x,y) forall z,y € B,(0),

where B,.(0) = {z € X: ||z|| < r}.

Throughout this paper, we assume that f : C' x C' — R is a bifunction satisfying the
following conditions:

(A1) f(z,z)=0forallz € C,

(A2) fis monotone, i.e., f(z,y) + f(y,z) < Oforallz,y € C;

(A3) limy o f(tz+ (1 —t)x,y) < f(z,y) forall z,y, z € C;

(A4) foreach z € C,y — f(z,y) is convex and lower semicontinuous.
Lemma 7. (See [16].) Let C' be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space X, A : C — X* be an a-inverse-strongly monotone

operator, and let f be a bifunction from C' x C' to R satisfying (A1)—(A4). Then, for all
r > 0, the following hold:

(i) Forxz € X, there exists u € C such that
1
flu,z) + (Au, y —u) + ;(y—u, Ju—Jz) >0 forally e C.

(i) If X is additionally uniformly smooth and K,. : X — C is defined as

1
Kr(x){UGC: f(u,y)+<Au,y7u>+;(y7u, JU*JIL‘>>O, yGC’},

Nonlinear Anal. Model. Control, 31(Online First):1-25, 2026
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then the following conditions hold:
1. K, is single-valued,
2. K, is firmly nonexpansive, i.e., forall z,y € X,

(Kyx — Ky, JK,x — JK,y) < (K,z — K.y, Jv — Jy),

3. F(K,) = F(K,) = EP(f),
4. EP is a closed convex subset of C,
5. ¢(p, Krz) + ¢(Krx,x) < ¢(p,x) forall p € F(K,).

The normal cone for C' at a point v € C' is denoted by N¢(v), that is, No(v) =
{z* e X*: (v—y,z*) > 0forally € C}.

Lemma 8. (See [19].) Let C' be a nonempty closed convex subset of a Banach space X
and T be monotone and hemicontinuous operator of C into X* with C = D(T), and let
B C X x X* be an operator defined as follows:

Tv+ Nev, veC,
Bv =
0, vé¢C.

Then B is maximal monotone and B=*(0) = VI(C, T).

Definition 1. (See [25].) Let X be a real smooth and uniformly convex Banach space,
andlet M : X — 2% be a maximal monotone operator. For all ¢ > 0, define the operator
Qé‘/l : X — X by Qé”x =(J+ M)z forallx € X.

Lemma 9. (See [22].) Let X be a real smooth and uniformly convex Banach space, and
let M : X — 2% be a maximal monotone operator. Then M =10 is a closed and convex
subset of X, and the graph G(M) of M is demiclosed.

Lemma 10. (See [26].) Let X be a real reflexive, strictly convex, and smooth Banach
space, and let M : X — 2X" be a maximal monotone operator with M0 # (. Then,
forallz € X,y € M~'0, and & > 0, ¢(y, QY x) + ¢(Q z,x) < ¢(y, x).

3 Main results

In this section, we introduce our new iterative algorithms.

Theorem 1. Let X be a real 2-uniformly convex and uniformly smooth Banach space,
and let X* be the dual space of X. Suppose that C is a nonempty closed and convex
subset of X and the mappings A, B : C — X* are a-inverse strongly monotone and
B-inverse strongly monotone, respectively. Let M; : X — 2% be a maximal monotone
operator with M;t0 #+ 0 foreachi = 1,2,...,m. Assume that f and T are relatively
nonexpansive mappings from C' into itself and I' = F(f) N F(T) N (ﬁ?;lF(QgL)) N
VI(C,A)N VI(C,B) # 0. Let ||Az|| < ||Ax — Aul|, ||Bz|| < ||Bx — Bul| for each

’

https://www.journals.vu.lt/nonlinear-analysis
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u € I'and x € C. Suppose that {x,, } is a sequence generated by x1 € C and

Up = e J ! (sn oJxy, + an ZJQE xn>

i=1
2p = e (Ju, — pBuy,), Yn = Mo J (T2, — NAz,),

! <Zﬁn,¢JQéw"'zn + Z%,ﬂ@%yn> ,

i=1 i=1
Tpy1 = HeJ ! [amlmen + apoJuy + o 3JTY, + an,4an},
where {Bni}7, {Vni}ity, and {s, .}, are real sequences in [a,b] C (0,1),
S (Bn 4 Yni) = L and 3" sn; = 1. Suppose that pu, X and {ou, ;¥ satisfy
the following conditions:
(1) {an,i} C (071): 2?21 Qp i = 1: 11m1nfn~>+oo an,4yliminfn~>+oo QAn1Qn 2,
lim il’lfn_H_OO Qi 20n 3 > 0;
(ii) X and p are real numbers such that 0 < \ < c*a/2 and 0 < p < c*3/2, where
1/c is the 2-uniformly convexity constant of X.

Then {x,,} converges strongly to ¢ = HF(T)ﬁ(ﬂ;”le(Qéwi))OVI(C,A)OVI(C,B) o f(q).

Proof. Letd € I' = F(f) N F(T) N (M=, F(Q¢")) N VI(C, A) N VI(C, B). By (3),
Lemma 2, the convexity of ||-||2, and our assumptions, we have

o, un) < b (u J- (sn 0J T + Z $niJ Q¢! a:n))

i=1

= ||la||® - 2<ﬁ, Sn.0J Ty + Z Sn,iJQéV[*xn>

i=1
2

m
Sn,OJ-rn + Z sn,zJQé\Jlxn

=1
< |l = 28n.0(4, Jz,) —ZZS,“ (@, JQL" ) + snollza?

i=1
" 2
+an,z-||62§“xn||

—3n0¢uxn +anz¢qu xn) (7N

i=1

Now, from Lemma 10 and the above it follows that

AU, up) < Sn,00(4, 25) an iP(T, ) = (1, ). (8)

Nonlinear Anal. Model. Control, 31(Online First):1-25, 2026
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From (6) and Lemma 2 it follows that
O, zn) < qi)(u J N Juy, — ,uBun)) =V(4, Ju, — uBuy,)
<V (i, Juy) — 2(J " (Jun, — pBuy) — @, pBuy,)
= ¢(t, un) + 2<J (Jup, — pBuy) — J 7 (Juy,), fuBun>
— 2(up, — G, Bupy,). ©)
By Lemma 4 and our assumptions, we obtain that
2(J 7 (Juy — pBuy) — J 7 (Juy,), —pBuy,)
2||J (Jun — pBuy) — J 7 (Juy) || |- pBun|

4 412 R
e 5 1Bl < 5| Bu, — Bl (10)

Since @ € VI(C, B) and B is -inverse strongly monotone, it follows that
_2M<un - ﬂ, Bun>
= —2u(u,, — 4, Bu,, — Ba) — 2u{u, — 4, Ba)
< —2p(uy — @, Bup — Bay < —2uf||Bu, — B, (11)

Now, substituting (10) and (11) into (9) and using our assumptions, we obtain that

i) < o) + 20 % = 8) 1B — Bl < ofaw). 2
In a similar way, by repeating the above proof for the sequence {y,, }, we conclude that
) < olnz) +2( % = o) A — AdlP < 6(0.2). A
From (8), (12), and (13) we have
P(, yn) < G(a, zn). (14)

It follows from (3) and the convexity of ||-||? that

(@, wn) = ¢><ﬁ, J! (Zﬁn,ﬂ@%zn + Z%,Z—JQQ”yn))

i=1 i=1

<lall? =23 Bnii JQe™zn) =23 (i, JQg" yn)

i=1 i=1

+Z/87L’LHQ£ ZTLH +Z’Y’I’LZ||Q§ ynH

Zﬁmqu Zn +Z%mbu62 Un)- (15)

i=1

https://www.journals.vu.lt/nonlinear-analysis
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Now, by (8), (12), (13), (15), and Lemma 10, we have
m
U wn Zﬂn z@b a, Zn + Z’Yn z¢ i yn) < (b(aaxn) (16)

From (3), (16), Lemma 2, the convexity of ||-||?, and the relatively nonexpansiveness of f
and T', we have that

Gty wpp1) < l|* = 2001, J fn) — 20m,2(8, Juy,)
— 20, 3(U, JTyYp) — 20 4(t, Jwy,)
+O‘n,1||fxn”2 "’0¢n,3||Tyn||2 +O‘n74||wn||2
= an,10(U, fTn) + Qn20(l, un) + i 30(t, Tyn) + anad(i, wy)
< Oén,1¢(a» Tp) + an72¢(ﬁ, Up) + an73¢(ﬂ, Yn) + an,4¢(ﬁv W) (17)
< (an,1 + ana) (U, Tn) + n 20(l, un) + an,30(t, Yn). (18)

Therefore, by (8), (14), (18), and condition (i), we have

G(i; Tnt1) < G(ih, Tn).

This show that {$(1, x,,)} is bounded and lim,,—, 4 oo ¢ (1, ) exists. It follows from (4)
that {x,,} is bounded. Now, by (8), (12), (13), (16), and relatively nonexpansiveness of
f and T, we have that the sequences {u,}, {zn}, {yn}, {wn}, {f2n}, and {Ty,} are
bounded.

Next, by (7), (14), (18), and Lemma 10, we conclude that

+ a2 (Sn,0¢(@, Zn) + Z Sni®(@, Qéwxn)>
i=1
< (1 — Oémg)(;s(ﬁ,xn)

+ a2 <5n,0¢('&a zn) + Z Sn,i [d)(r&’ zn) - QS(QéWixvu xn)])

i=1

= ¢(ﬁ7xn) - an72zsn7i¢(Qé\4ixn7xn)- (19)

i=1

Now, since {¢(, z,,)} is convergent, it follows from (19), condition (i), and our assump-
tions that lim,, _, oo gb(QéV['ixn, xn) = 0foreachi =1,2,...,m. Hence, from Lemma 1
we have that

lim [|Q 2, — 2, =0 (20)

n—-+oo

Nonlinear Anal. Model. Control, 31(Online First):1-25, 2026
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foreachi = 1,2,...,m. It follows from (5), (20), the boundedness of the sequences {x,, }
and {Qé\/['ixn} foreach: = 1,2,...,m, and using uniformly norm-to-norm continuity of
J on bounded sets, that

lim qS(mn,QéV[ia:n) =0 20

n—-+4oo

foreach: =1,2,...,m. By (8), (12), (14), (15), (17), and Lemma 10, we conclude that
(U, Tnr1) < (1 — ana)p(t, T0) + ap ap(, wy)
< (1= ana)o(, zn)

+ an,4<2/3n7i¢(a, Q' zn) + Y mio (@, Q?iyn))

i=1 i=1
< (1= ana)o(a, z,)

+an4<26nz U, 2p _QS(QéWiznazn)]
+Z%” (i, yn —czﬁ(Qé-w"ymyn)])

= ¢(ﬁa xn) — On 4 Z ﬁn,zd)(QéVIl Zny Zn)

. =1
—Ong Z %,z‘éf)(Qéwiym yn)-
=1

Hence, from (4), the above and our assumptions we obtain

Gty 1) < G0, Tn) — Ot Y Brid(QL 2, 2n) (22)
i=1
and
¢(ﬂa xn-‘rl) < (ﬁ(ﬂ, xn) —QOn4g Z 'Yn,z(b(QéV[I Yns yn) (23)
i=1

Now, by (22), (23), condition (i), and the same techniques used for proving (20), we
conclude that

: M, — i M, _ =
Jim Q¢ 2 =z =0, lim [[Q¢"yn —yn =0 (24)
foreach¢ = 1,2,...,m. From (5), (24), and the uniformly norm-to-norm continuity of
J on bounded sets we have that
Mi . 3 ]\/[i J—
nEIJIrl ¢(Zn7 Qg Zn) =0, ngglooéﬁ(yn, Qg yn) =0 (25)
foreachi =1,2,...,m.

https://www.journals.vu.lt/nonlinear-analysis
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Let 1 = sup,,{||fxnll, ||un|}. Hence, by Lemma 5, there exists a continuous strictly
increasing convex function g, : [0, 2r1] — [0, +-00) such that g,, (0) = 0, and using (8),
(14), (16), the convexity of |||, and the condition of relatively nonexpansiveness of f
and T', we obtain that

(i, wpsr) <|A||* = 206 n 1 T frn + anoJun + an 3 TYn + o aJwy)

+ |an1d frn + anoJuy + an s J Ty, + an,4anH2
< Jf]* = 20,1 (@, J frn) — 2020, Jun) — 200 3(0, JTyy)
= 200,4(@, Jwn) + an,lllfxn||2 + Q2 Jun | + O‘n,SHTyn”Q
+ an,4||wn||2 — Qn,10n,29r, (”fon - Jun”)
S a1 (U fan) + o 20(t, un) + an 30(0, Tyn) + o a9 (a, wn)
— 10 29r, (1 fn — Jun))
< an,1¢(a7 Tyn) + an,2¢(ﬁ'> Up) + an’3¢(ﬁ, Yn) + Oén,4¢(ﬁa W)
— 10 2Gr, (1 fn — Jun))
< (i, 20) = 10,20, (| f2n — Jul]). (26)

Let ro = sup,, {||unll, |Tyn|}- Then, in a similar way as above, there exists a continuous
strictly increasing convex function g,, : [0, 2r2] — [0, +00) with g,.,(0) = 0 such that

gb(ﬁ, In—&-l) < d)(r&’ 'Tn) — Op, 2000 30r, (HJun - JTynH) (27)
Therefore, it follows from (26) that

On,10n 20 (”fon - Jun”) < (U, 2n) — AU, Tpy1).

Hence, from condition (i) we conclude that
ngg_loo 9rq (HJf-Tn - J“ﬂ”) =0.

Moreover, from the fact that g,, is a continuous function we have

gr, ( lim T fwn = Junl) = Tmgp, (1) fn = Jun))
= 0 = g’fl (0)7

S0
ngr}rloo I fen — Juy| = 0.

Since J 1 is uniformly norm-to-norm continuous on bounded sets, we have that

lim ||fx, —u,| =0. (28)
n—+o0o

Now, from (27), condition (i), and a similar technique as above we conclude that

lim ||u, — Ty.|| = 0. (29)

n—-+oo
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Then from (5), (28), (29), the uniformly norm-to-norm continuity of ./ on bounded sets,
and the boundedness of the sequences { fx,, }, {u,} and {T'y,, } we have that

lim (b(un, f‘rn) =0, El}rl ¢(unaTyn) =0. (30)

n—-+oo

Using our assumptions, we obtain from (21) and Lemma 2 that

¢(I7u un) g ¢ (Ina J71 (Sn,OJZ'n + Z Sn,iJQé\/Ii xn))

i=1

m
< Hxn||2 - 23n,0<$n7 J$n> -2 an,i<xn7 JQé\an>

. =1 2
tsmollnl® + D snif| Q" an]
T
= 3n,0¢(mna xn) + Z Sn,i(z)(xn, Qéwzxn)
=1

m
Z 3n,i¢($n, QéWixn) — O asn — +oo.
=1

Then from Lemma (1) we conclude that

lim ||z, —un| =0. 31

n—-+oo

By (8), (12), and (13), we obtain that
A A 2u <112
O ) < O 20) + 21 5 — 3 ) | Bun — Bl (2

Therefore, from (8), (18), and (32) we have
(ﬁ(ﬂ, xn-‘rl) < (an,l + an,4)¢(ﬂa mn) + an,2¢(a; un) + an73¢(12, yn)

~
< (Oén,l + O‘n,4)¢(ﬁ7 fEn) + O‘n,2¢(r&a Un)

+ a3 (¢(a, T,) + 2u<2c’j - 5) | Buy, — Ba||2>

A 2 )
< B(a, ) + 2u<c‘; - >||Bun ~ B

Hence,
2 (5 - 202‘) 1Bun — Bi|l* < ¢(it, ) — ¢t 2n41). (33)
Since {¢(4, z,,)} converges, it follows from (33) and (ii) that
nErJIrlOOHBun — Bal* = 0. (34)
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In a similar way as above, from (8), (12), (13), and (18) we have
d)(ﬂ, xn-&-l) < (an,l + O‘n74)¢(ﬂ7 an) + an,2¢(a7 un) + Oln73¢)(ﬂ, yn)
< (O‘n,l + O‘n,4)¢(ﬁ, Tp) + oy 2¢(ﬁa Up)
2\
+ ans <¢(€L, Tn) + 2)\< - a) |Az, — Au||2>
c?
2
< @t ) + 2“<c2 - a> | Az, — Adl?,
S0,
lim [|Az, — Ad||*> =0 (35)
n—-+oo
Therefore, from (6), (34), and Lemmas 2 and 4 we get
O(tn, zn) < ¢(un, J*I(Jun - uBun)) = V(un, Ju, — pBuy,)
< V(up, Juy) — 2<J_1(Jun — pBuy) — up, uBun>
= ¢(un, un) — 2(J " (Ju, — pBuy) — J " (Ju,), pBuy,)
<2[[J 7 (Jun — pBuy) — I (Jun) ||| nBu, ||
4 44,2
< LHB ol < L Bu, — B> -0 asn — +oc.
c
Then, using Lemma 1, we obtain
ngllloo ||, — 2zn]| = 0. (36)
Also, in a similar way as above, from (6), (35), and Lemmas 2 and 4 we have
d)(zna yn) = ¢(Zna Jﬁl(‘]zn - )\Azn))
4N? 9
< —5 |4z, — Adl| - 0 asn — +oo.
Then, using Lemma 1, we get
lim [|zn —ynl =0. (37)
Now, from (24) and (37) we obtain that
M; _

Jim [z = Q¢ =0 (38)
for each ¢ = 1,2,...,m. Therefore, using (5), (38), and the uniformly norm-to-norm
continuity of J on bounded sets, we have that

lim ¢ (zn, Q Yn) = (39

n—-+oo
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fori =1,2,...,m. It follows from (3), (25), (39), and the convexity of ||-||? that
¢ (2n, wn) = (20, J (Z@n ZJQg Zn+27n zJQg yﬂ))

S HZnHQ o QZ’B”J<Z”7JQ£WZ”> o 227n,i<zn7:]@émyn>

i=1 i=1

+Zﬁnl|@§ zn” +Z’Vnz‘Q5 ynH

i=1

Zﬁnz¢ Znan Zn +Z'7nz¢ Zn,Q§ yn)—>0 asn — +o00.

=1
Now, from Lemma 1 we have that lim,, 4 ||z, — wy|| = 0. Therefore, it is evident
from (36) that lim,,, | o ||y, — wy|| = 0. Then from (4) and the continuity of the
mapping J we have
lim  ¢(un,w,) =0. (40)

n—-+oo

From (30), (40), and our assumptions we conclude that

(b(un’anrl) < ||un||2 - 2an,1<un7 Jf$n> - 2Oén,2<un7 Jun>
— 20, 3(Un, JTYn) — 200 4 (U, Jwy,)
+Oén,1||fl‘n||2 +an72||un||2 +Oén74||wn||2
= an10(Un, fTn) + an 20 (Un, Un) + @n 30(Un, Tyn)
+ an74¢(una wn) —0 asn — “+00.

I?

Therefore, by Lemma 1, we have

ngrf |Znt1 — unl| = 0. 41)

From (31) and (41) we obtain that
[Zns1 — 2l < |Tng1 — unll + [[un — 2] = 0 asn — +o0.

Thus {x,, } is a Cauchy sequence, hence {x,, } converges strongly to a point ¢ € C'. Hence,
from (31), (36), and (37), we conclude that {u,, }, {, } and {2, } converge to q.
Next, we prove that g € VI(C, B). Consider the operator B C X x X™ as follows:

~ B N,
{ v+ Neov, veC, 42)

Br= 0, ve¢C.

It is clear from Lemma 8 that B is maximal monotone and B~1(0) = VI(C, B). Now,
let (v,w) € G(B) withw € Bv = Bv 4+ N¢(v). Hence w — Bv € N¢(v), therefore,

(v — zp, w— Br) > 0. (43)
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Now, we have from Lemma 3 that (v — 2,,, J(J~*(Ju, — pBuy,)) — Jz,) < 0. Then
<uzn, Bun+‘]z"_‘]u”> > 0. (44)
7

From (43), (44), and the definition of B we conclude that
(v — 2z, )

> (v —z,, Bv) — <V—zn, Bun+m>

Jzn — Juy,
= (v —zn, Bv— Bz,) + (v — zp, an>—<1/—zn,Bun+zu>

> (v — zp, Bz, — Buy,) — <1/ Zn, Jzn—Jun>
I

1 1
>—||u—zn|(6zn—un||—u||Jzn—Jun>. 45)

Taking n — 400 and using the uniformly norm-to-norm continuity of J on bounded
sets and (36), we obtain (v — ¢, w) > 0. Now, from the maximal monotonicity of B we
conclude ¢ € B~1(0) = VI(C, B).

Next, we show that ¢ € VI(C, A). Let A C X x X* be an operator defined as
follows:

(46)

~ Av+ Ngu, 1€ C,
AL =
0, ¢ C.

We know from Lemma 8 that Ais maximal monotone and also 121_1(0) = VI(C, A).
Suppose that (¢,6) € G(A) with § € Ar = At + Ng(t). Then § — Av € Ne(t). In
a similar way as in (45), we obtain that

1 1
= 0 =l =l (= 5l = 3100 = Tl ). D)

Taking the limit in the above inequality as n — +o0o, we deduce that (¢ — ¢, §) > 0.
Hence, from the maximal monotonicity of A we imply that g € A=1(0) = VI(C, A).

Next, we prove that ¢ € N2 F (Q 7). Tt follows from (20) and the uniformly
continuity of J on bounded subsets of X that

. M . _
nll}r_{l()() HJQE Tn Jacn” 0

for each i = 1,2,..., m. Hence, by Definition 1, we have JQ ‘xn, + EM; QM"xn =
Jx,,. Therefore, there exists h,; € M; QMan such that b, ; = (Jz,, — JQ5 ‘x,)/E.

So, by the above observation, h,, ; — 0 as n — +4oo for each ¢ = 1,2,..., m. Then
from (20) it is clear that Qf T, — qasn — +oo, and using Lemma 9, we have that
0 € Mg foreachi=1,2,...,m,ie,q€ N M 0=n 1F(QE ).
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Next, we show that ¢ € F(f). From (28) and (31) we conclude that

i ||~ = 0.

Then ¢ is an asymptotic fixed point of f. Since f is a relatively nonexpansive mapping,
F(f) = F(f). Therefore, g € F(f).
Next, we prove that ¢ € F(T'). From (29), (36), and (37) we obtain

Jim ([ Tyn = ynll = 0.

Hence ¢ is an asymptotic fixed point of 7. Now, since T is a relatively nonexpansive

mapping, F'(T) = F(T). So, g € F(T). Then

4= pynop, r@M)avie,anvie,s) © (@)

This completes the proof. O

Theorem 2. Let X, X*, C, A, B, f, T, and M; fori =1,2,...,m be as in Theorem 1.
Suppose that g is a bifunction from C' x C to R, which satisfies conditions (A1)—(A4). Let
I'= F(f)nF(T)n (N2, F(Q)) N VI(C, A) N VI(C, B) N EP(g) # 0. Suppose
that {x,,} is a sequence generated by x1 € C and

Un € Ct g(n,y) + (Avn, y — vn)
1
+ —(y—vp, Jup —Ja,) =0 forally e C,

n

kn = o J Y (Jv, — uBu,),

Up = e J ! (sn,oJ:rn + Z snyiJQéM’ixn> ,

=1
Qn = {L €t ¢(L7kn) < Q/)(L,‘Tn)}v (48)
Zn = HQT,,Jil(Jun - ﬂBun)v Yn = HCjil(JZn - )\Azn)v
Wnp = J71 (Z ﬂn,z‘]Qg]zzn + Z ’Yﬂ,lJQévjlyn> 3
=1 =1

hn = J_l[an,l‘]fxn + an,ZJUn + an,SJkn + an,4JTyn + an,San]7
Tn+1 = HChna
where T, € [a,+00) for some a > 0, {Bni}i%q, {Vnititq, and {sni}1>, are real
sequences in [a,b] C (0,1), >0 (Bni + Vni) = L, and > i~ sni = 1. Let p, A, and

{am i }5_ satisfy the following conditions:

. 5 . .
(1) {an,itiq € (0,1), Y0, o = 1, liminf, 40 ap 102 > 0, and
liminf, 4o ap,200, 4 > 0.
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(ii) A and p are real numbers such that 0 < X < c?a /2 and 0 < p < c?j3/2, where
1/c is the 2-uniformly convexity constant of X.

Then {x,,} converges strongly to

9= HF(T)m(m;;IF(QEMi))m VI(C,A)NVI(C,B)NEP(g) ° f(@).

Proof. First, we prove that {z,} is well defined. Let x € I'. It is clear from Lemma 7
and algorithm (48) that v,, = K,._z,, and hence,

d(kyvn) < O(K, zp). (49)
From (6) and Lemma 2 we have that

d(k, kn) < ¢k, T~ (Jvp, — pBuy)) = V(k, Ju, — pBuy,)
< V(k, Jop) — 2<J_1(Jvn — puBoy) — K, ,qun>
= ¢(k,vn) — 2u{v, — K, Bu,)
+2(J " (Jvn — pBuyn) — I (Jvy,), —uBuy). (50)

From the /-inverse strongly monotonicity of B and the fact that x € VI(C, B) we have
that

—2u{v, — K, Bv,) = —2p{v, — k, Bv, — Bk) — 2u(v,, — k, BK)
< 26| Bu, — Br|*. (51)

By Lemma 4 and the condition || Bz|| < |Bx — Bk|| for all x € C, it follows that
2(J " (Jvy, — pBvy) — J 7 (Juy), —puBuy,)
< 2T (v, — pBun) — I ()| uBon
<2 B < Y2 v, - B 52
C C

Hence, substituting (51) and (52) into (50), we have that

2
d(Kykn) < &K, vn) + 2”(05 - 6) | Bv, — Br||? < ¢(k,vp). (53)
Therefore, it follows from (49) and (53) that

d(Kykn) < Ok, xp). (54)

This shows that k € @, hence {z,,} is well defined.
Next, we show that @, is a closed and convex subset of C' for all n € N. To this end,
using the definition ¢, it is clear that the inequality ¢(¢, k) < &(¢, z,) is equivalent to

2, Jan, — Jky) < ||z = || knll* (55)

Hence, it is clear from (55) that )., is closed and convex for each n € N.
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Let & € I'. Note that using Lemma 2, the inequalities (8), (13), (14), and (16) hold
for the algorithm (48). Now, from (3), (14), (16), (49), Lemma 2, the convexity of ||-||2,
and the relatively nonexpansiveness of f and T it follows that

O(t, Tpi1) < |O)|% = 2001 (@0, T fn) — 200 2(T0, Juy,)
— 200, 3(U, Jkpn) — 200, 4{G, JTYpn) — 200, 5(0, Jws,)

fan2 + O‘n,QHUnHQ + O‘n,?»”kn”Z

+ Qpa Tyn||2 + an,5||wn||2
= an,1¢(ﬁa Jan) + Ozn,gd)(ﬁ, Up) + an73¢(ﬁ, ky)

+ ap ad(Q, Tyy) + an 506(0, wy,)
< a17n¢(a7 xn) + an,g(b(ﬂ, un) + Oén)g(b(’&, kn)

+ n ad(U, Yn) + an 50(1, wy)
< (1= an2)0(t, zn) + on 20(t, up ). (56)

+ Qnp, 1

By (8) and (56), we have
(b('avanrl) < ¢(ﬁ71’n)

This demonstrates that {¢(, 2,,)} is bounded and lim,,—, o ¢(@, x,,) exists. It follows
from (4) that {x,, } is bounded. Therefore, by (8), (12), (13), (49), (53), and the relatively
nonexpansiveness of f and T, we conclude that {u,}, {zn}, {yn}, {vn}, {kn}, {fzn},
and {T'y,, } are bounded.

Let 5 = sup,,{||fZxll, ||un|}. Hence, by Lemma 5, there exists a continuous strictly
increasing convex function g, : [0, 2r3] — [0, +00) such that g,, (0) = 0, and using (8),
(14), (16), (54), the convexity of ||- 2, and the condition relatively nonexpansiveness of f
and 7T, we have

B, Tpy1) < ||ﬁ||2 = 200, 1@, J fn) — 200 2(T, Jun) — 200 3(t, J k)
- 20%,4@7 JTyn) — 20,5 (t, Jwy) + Qn,1 HfInH2
Tyn|? + 5[ wnl|”

+ anallun® + anllknll* + an.a
— U, 100,201, (||fon — Jun||)
= 100, fn) + 0 2d (T, ) + i 30(1, k) 4 4 d(i, Ty,

+ 50, Jwn) — an 10,29, (|7 f2n — Jual|)
< an 19ty Tn) + Qp 20(T, Up) + an 301, k) + an ad(t, yn)
+ 500, W) — 10 2rs (|| f2n — Jun|)
< O(t, Tn) — an 10 2Grs (| T f2n — Junl]). (57)

Let r4 = sup,, {||unll, |Tyn|}. Then, in a similar way as above, there exists a continuous
strictly increasing convex function g,, : [0, 2r4] — [0, +-00) with g,., (0) = 0 such that

¢(ﬁ, xn+1) < qﬁ(ﬁ, (En) - an,Qan,4gr4(HJun - JTynH) (58)
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Hence, by (57), we have that

Oén,lan,2gr3 (”szn - Jun”) < ¢(ﬂ, xn) - ¢(7l; xn—&-l)-
Now, by condition (i), we have that
nllg‘,liloo 9rs (|| fn, — Jun|) = 0.
Therefore,

goa ( Nim |1 fvn = Junl) = T gro (1 — Junl)

=0= Grs (0)
because g, is a continuous function. Then
nll)glm | fzn, —unll = 0. (59
Similarly, from (58) we obtain that
ngrfoo llun, — Tyn|| = 0. (60)
It follows from (5), (59), and (60) that

Note that equalities (31), (36), and (40) hold for the algorithm (48). From (31) and
(36) we have that

nEIJIrlOO |z — zn| = 0. (62)
Then, using (5), we have that lim,_, . ¢(zn,x,) = 0. Since z, € @, we have
lim,,—, ¢(2p, kn) = 0. Hence, from Lemma 1 we have

ngr-lr—loo Iz, — k|l = 0. (63)

Then it follows from (36) that lim,,_, o ||tn, — kr|| = 0. So, by (5), we obtain that
lim  ¢(uy, k,) = 0. (64)

n—-+4oo

Now, we conclude from (40), (61), and (64) that

AUy Tni1) < [unl® = 20001 (Uny T F20) — 200 2 (U, Jun) — 200 3(tn, Jky)
— 20,4 (Un, JTYn) — 200, 5 (U, Jwy,) + 04”,1||fxn||2
+ Q2 |un||2 + a3 an2 + O‘n,4||Tyn||2 + Qns
= an,léf’(um fan) + an72¢(un, Up) + Oén,3¢(una ky)
+ 4 d(Un, TYn) + n 5G(Un, wy) — 0 asn — 4o00.

wnH2

Hence, by Lemma 1, we have

ngrfoo |, — pt1] = 0. (65)
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Now, we obtain from (31) and (65) that

Erfoo [#nt1 — 2nl| = 0.

Therefore, {z,} is a Cauchy sequence. So, {x,} converges strongly to a point ¢ € C.
Moreover, by (31), (36), (37), (59), and (60), we conclude that {u,}, {zn}, {yn}, {f2n},
and {Ty,} strongly converge to ¢. It is clear that relations (42)—(47) are valid for al-
gorithm (48). Hence, as in the proof of Theorem 1, we conclude that ¢ € VI(C, A) N
VI(C, B).

Next, we show that ¢ € F(Qé\/[) for each i = 1,2,...,m. From (7), (14), (56),
Lemma 10 and similar to (19), we have that

m
d)(ﬂ, xn-‘rl) g d)(ﬂ'a xn) - an,Q Z Sn,iqﬁ(QéWixnv $n) .

=1

Therefore, equality (20) is valid for algorithm (48). So, as in the proof of Theorem 1, we
see that g € ﬂ;’;lF(Qé”"').
Next, we prove that ¢ € F(f). It follows from (31) and (59) that

lim ||fz, — .| =0. (66)

n—-+o0o

Moreover, z, — ¢, hence, by (66), we conclude that ¢ is an asymptotically fixed point
of f. On the other hand, ¢ € F(f) = F(f) because f is a relatively nonexpansive

mapping.
Next, we show that ¢ € F(T"). From (36), (37), and (60) we have

Jim ([ Tyn = ynll = 0.

Hence ¢ is an asymptotic fixed point of 7. Now, since 7' is a relatively nonexpansive

mapping, F'(T) = F(T). So,q € F(T).
Finally, we prove that ¢ € EP(g). From (62) and (63) we obtain that
lim ||z, — k,|| = 0. (67)
n—-+oo

Let 75 = sup,{||val, ||zx||}- Hence, from Lemma 6 there exists a continuous, convex,
and strictly increasing function g, : [0, 2r5] — [0, +00) such that g,.. (0) = 0 and

9rs (Ilvon = 2nll) < G, ). (68)
Now, by (53), (67), (68), Lemma 7, and the fact that v,, = K, x,, we conclude that
Grs (an - xn”) < ¢(Umxn) < o, zn) — (b(ﬁvvn)
< 00, 20) = $akn) = l|nl® = [knll® — 203, T2y — Tky)
< (= Enll + Enll)* = onl|? = 208, o — Thin)
< lan = kall® + 20 knllllzn = knll + 2l|all| T2 — Tk
— 0 asn — +oo.
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Since g, is a continuous strictly increasing convex function, ||v, —x, || — 0asn — +oc.
So,

nll)rfoo | Jvp, — Jap || = 0. (69)

From v,, = K. x,, we have that g(vs,, y) + (Avp, y—vn)+ (y—vpn, Jup,—Jp) /1 =0
for all y € C. Moreover, by condition (A2), g(y,v,) < —g(v,,y) forally € C.
Therefore,

1
g(yavn) < <Avn7 y— vn> + 7<y — Un, Ju, — an>

n

for all y € C. Letting n — 400 and using (69) with condition (A4), we obtain

9(y,q9) < (Ag, y — q) (70)

for all y € C. Assume that y; = ty + (1 —t)gforally € C and t € (0,1). By (70),
conditions (A1), (A4), the convexity of g, and the monotonicity of A, we have that

0=9(ye, ye) + (Aye, Yt — )
< tg(ye,y) + (1 —1)g(ye, @) + (Aye, ty + (1 —t)g — ye)
tg(ye,y) + (1 =) g(ye, q) + t{Ays, y — ye) + (1 — t)(Ays, ¢ — )
=ty y) + (1 = )g(ye, q) + t(Ayr, y — yt)
+ (1 = t)(Ay: — Aq, ¢ —ye) + (1 = t)(Aq, ¢ — i)
<tg(yey) + t{Aye, y — )

forally € C. Hence 0 < g(yt, y)+{Ay:, y—y¢). Letting t — 0 and using condition (A3),
we conclude that 0 < ¢(q,y)+(Aq, y—q) forally € C. Then q € EP(g). Therefore, ¢ =

HF(T)n(m:”:'IF(Qé”i))nVI(C,A)nVI(C,B)mEP(g) o f(q), and this completes the proof. [

4 Numerical example and remark

Remark. If A = B = kI for a real number £ > 0, X = R, and C is a nonempty
closed and convex subset of X, then I" = {0} is the only case that |Az| < |Az — Aul
and |Bz| < |Bx — Bu|forallz € C andu € T'. Ifalso, A = B = 0 and [ is
an arbitrary subset of C, then, obviously, the above conditions hold. We also refer the
readers to [9, p. 3686, Remark 3.4].

The following example illustrates the behavior of algorithm (48) of Theorem 2.

Example 1. Let X =R, C =[-5,5, A=B=Lu=XA=1/3,c=1La=0=1
Suppose that f and T are self-mappings on C' defined by f(x) = T'(z) = «/3 for all
x € C. Consider the function g : C' x C' — R defined by

g(u, ) := 12y + Yuy — 21u?
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for all u, y € C. Itis clear that conditions (A1)—(A4) are satisfied. Suppose that z € X,
r > 0,and v € K,x. Then, by Lemma 7, it follows that

g(v,y) + (Av, y — v) + %(y —v, Ju—Jx) =20
forally € C,i.e,
0 < 12ry® + 9rvy — 212 + roy — rv? + vy — 02 + vz — xY
= 12ry* + (10rv + v — )y — 22rv? — v? + vz,
Leta = 12r, b = 10rv +v — z and ¢ = —22rv? — v2 4 vz. Then we have that
A=0b%—4ac<0,ie.,
0> (10rv +v — 2)? — 487 (—22rv” — v? + v2)
= 11561202 4 68rv? + v? — 68rve — 2ux + 22
= ((34r 4+ 1)v — x)Q.

It follows that v = x/(34r + 1). Hence K,x = x/(34r + 1). Now, by Theorem 2,
we obtain that v, = x,/(34r, + 1). Since F(K,,,) = {0}, from Lemma 7 we have
EP(g) = {0}.

Obviously, F(f) = {0} and ¢(0, f(z)) < ¢(0,z) for all x € C. It is clear that
E(f) = {0} = F(f). Therefore, f is a relatively nonexpansive mapping. Similarly, T
is a relatively nonexpansive mapping. Moreover, it is obvious that 0 € VI(C,T). Now,
we define M; : R — 2% by M;z = {2z} foreachi = 1,2,...,m and £ = 1/2, hence
Qém = z/2 foreachi = 1,2,...,m. Clearly, 0 € F(Qéwl) foreachi = 1,2,...,m.
Therefore,

0= IT{oy 0 f(0) = HF(T)F\VI(C,A)ﬂVI(C’,B)ﬁ(ﬂ;’;lF(Qéwi)ﬁEP(g) ° f(0).

Next, we assume that m = 3. For each z € X, define the mapping M; : R — 28
by M;x = {2z} and let £ = 1/2, hence Qé‘/[ = 2/2. We choose a,, 1 = 1/5 + 1/(8n),
a2 =1/5—-1/(6n), ans =1/5+1/(12n), apa = 1/5—1/(6n), a5 = 1/5+1/(8n)
and Sn,0 = Sn,1 = Sn,2 = Sp,3 = 1/47 /Bn,l = 671,2 = ﬁn,S = Yn,1 = Tn,2 = VYn,3 =
1/6, r, = 1/34 forall n € N and vy = 0. Therefore, {cv, ; }7_; satisfies the conditions
of Theorem 2. We know that z,, € C, hence

1 5

kn:§xn, un:§xn, Qn:{L602 |L—kn|<|L—xn|},
5 5 25

Zn = 75%n, n = T5Tn, Wn = 7——Tn,
12 ST 144

o= (E AN (LS (L LS,
A T )3T T \5 en )8 T 5 120 /87"

(Lo AN(W5, (1, 1Y 25
5 6n/\3/)18°" 5 8n /1447 ™

See Fig. 1 for the value x1 = 3.
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Figure 1. Convergence behavior of generated sequences by Example 1.

Conflicts of interest. The authors declare no conflicts of interest.

Acknowledgment. The authors wish to express their gratitude to the editor and the
reviewers for their invaluable comments and suggestions.

References

1.

R.P. Agarwal, D. O’Regan, D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings
with Applications, Springer, New York, 2009, https://doi.org/10.1007/978-0-
387-75818-3.

Y.I. Alber, Metric and generalized projection operators in Banach spaces: Properties and
applications, in Theory and Applications of Nonlinear Operators of Accretive and Monotone
Type, Lect. Notes Pure Appl. Math., Vol. 178, Marcel Dekker, New York, 1996, pp. 15-50,
https://doi.org/10.48550/arXiv.funct-an/9311001.

G. Cai, S. Bu, Weak convergence theorems for general equilibrium problems and variational
inequality problems and fixed point problems in Banach spaces, Acta Math. Sci., Ser. B, Engl.
Ed., 33(1):302-320, 2013, https://doi.org/10.1016/S0252-9602 (12) 60212~
4.

G. Cai, Y. Shehu, O.S. Iyiola, Strong convergence results for variational inequalities and fixed
point problems using modified viscosity implicit rules, Numer. Algorithms, 77(2):535-558,
2018, https://doi.org/10.1007/s11075-017-0327-8.

Y. Cens, S. Reich, Iterations of paracontractions and firmly nonexpansive operators with
applications to feasibility and optimization, Optimization, 37(4):323-339, 1996, https:
//doi.org/10.1080/02331939608844225.

G.Z. Eskandani, M. Raeisi, T.M. Rassias, A hybrid extragradient method for solving pseudo-

monotone equilibrium problems using Bregman distance, J. Fixed Point Theory Appl., 20(3):
132, 2018, https://doi.org/10.1007/s11784-018-0611-9.

Nonlinear Anal. Model. Control, 31(Online First):1-25, 2026


https://doi.org/10.1007/978-0-387-75818-3
https://doi.org/10.1007/978-0-387-75818-3
https://doi.org/10.48550/arXiv.funct-an/9311001
https://doi.org/10.1016/S0252-9602(12)60212-4
https://doi.org/10.1016/S0252-9602(12)60212-4
https://doi.org/10.1007/s11075-017-0327-8
https://doi.org/10.1080/02331939608844225
https://doi.org/10.1080/02331939608844225
https://doi.org/10.1007/s11784-018-0611-9
https://doi.org/10.15388/namc.2026.31.44410

24

10.

11.

13.

14.

15.

16.

17.

19.

20.

21.

M. Ghadampour et al.

. M. Ghadampour, D. O’Regan, E. Soori, R.P. Agarwal, A generalized strong convergence algo-
rithm in the presence of errors for variational inequality problems in Hilbert spaces, J. Funct.
Spaces, 2021:9911241, 2021, https://doi.org/10.1155/2021/9911241.

. M. Ghadampour, E. Soori, R.P. Agarwal, D. O’Regan, Two generalized strong convergence
algorithms for variational inequality problems in Banach spaces, Fixed Point Theory, 25(1):
143-162, 2024, https://doi.org/10.24193/fpt-r0.2024.1.009.

. H. liduka, W. Takahashi, Strong convergence by hybrid type method for monotone operators in
a Banach space, Nonlinear Anal., Theory Methods Appl., 68(12):3679-3688, 2008, https:
//doi.org/10.1016/3j.na.2007.04.010.

L.O. Jolaoso, A. Taiwo, T.O. Alakoya, O.T. Mewomo, A strong convergence theorem for
solving pseudo-monotone variational inequalities using projection methods, J. Optim. Theory
Appl., 185:744-766, 2020, https://doi.org/10.1007/s10957-020-01672-3.

Z. Jouymandi, F. Moradlou, Extragradient methods for split feasibility problems and
generalized equilibrium problems in Banach spaces, Math. Methods Appl. Sci., 41(2):826—
838, 2018, https://doi.org/10.1002/mma.4647.

. S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in
a Banach space, SIAM J. Optim., 13(3):938-945, 2003, https://doi.org/10.1137/
S5105262340139611X.

F. Kohsaka, W. Takahashi, Strong convergence of an iterative sequence for maximal monotone
operators in a Banach space, Abstr. Appl. Anal., 2004(3):239-249, 2004, https://doi.
0org/10.1155/51085337504309036.

G.M. Korpelevich, The extragradient method for finding saddle points and other problems,
Ekon. Mat. Metody, 12(4):747-756, 1976.

B.M. Lashkarizadeh, E. Soori, Strong convergence of a general implicit algorithm for
variational inequality problems and equilibrium problems and a continuous representation of
nonexpansive mappings, Bull. Iran. Math. Soc., 40(4):977-1001, 2014.

Y.-C. Liou, Shrinking projection method of proximal-type for a generalized equilibrium
problem, a maximal monotone operator and a pair of relatively nonexpansive mappings,
Taiwanese J. Math., 14(2):517-540, 2010, https://doi.org/10.11650/twjm/
1500405805.

B. Orouji, D. O’Regan, E. Soori, R.P. Agarwal, The split common null point problem for gen-
eralized resolvents and nonexpansive mappings in Banach spaces, Taiwanese J. Math., 23(1):
165-183, 2022.

. S.Reich, Book review: Geometry of Banach spaces, duality mappings and nonlinear problems,
Bull. Am. Math. Soc., 26(2):367-370, 1992, https://doi.org/10.1090/S0273—
0979-1992-00287-2.

R.T. Rockafellar, Monotone operators and the proximal point algorithm, Bull. Am. Math. Soc.,
14(5):877-898, 1976, https://doi.org/10.1137/0314056.

A. Tada, W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping
and an equilibrium problem, J. Optim. Theory Appl., 133(3):359-370, 2007, https://doi.
org/10.1007/s10957-007-9187~z.

S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and
fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331(1):506-515, 2007, https:
//doi.org/10.1016/5.7maa.2006.08.036.

https://www.journals.vu.lt/nonlinear-analysis


https://doi.org/10.1155/2021/9911241
https://doi.org/10.24193/fpt-ro.2024.1.09
https://doi.org/10.1016/j.na.2007.04.010
https://doi.org/10.1016/j.na.2007.04.010
https://doi.org/10.1007/s10957-020-01672-3
https://doi.org/10.1002/mma.4647
https://doi.org/10.1137/S105262340139611X
https://doi.org/10.1137/S105262340139611X
https://doi.org/10.1155/S1085337504309036
https://doi.org/10.1155/S1085337504309036
https://doi.org/10.11650/twjm/1500405805
https://doi.org/10.11650/twjm/1500405805
https://doi.org/10.1090/S0273-0979-1992-00287-2
https://doi.org/10.1090/S0273-0979-1992-00287-2
https://doi.org/10.1137/0314056
https://doi.org/10.1007/s10957-007-9187-z
https://doi.org/10.1007/s10957-007-9187-z
https://doi.org/10.1016/j.jmaa.2006.08.036
https://doi.org/10.1016/j.jmaa.2006.08.036
https://www.journals.vu.lt/nonlinear-analysis

New strong convergence algorithms for general equilibrium 25

22.

23.

24.

25.

26.

27.

W. Takahashi, Nonlinear Functional Analysis: Fixed Point Theory and Its Applications,
Yokohama Publishers, Yokohama, 2000.

Y. Takahashi, K. Hashimoto, M. Kato, On sharp uniform convexity, smoothness, and strong
type, cotype inegualities, J. Nonlinear Convex Anal., 3(2):267-281, 2002.

D.V. Thong, D.V. Hieu, Some extragradient-viscosity algorithms for solving variational
inequality problems and fixed point problems, Numer. Algorithms, 82(3):761-789, 2019,
https://doi.org/10.1007/s11075-018-0626-8.

L. Wei, YF. Su, HY. Zhou, New iterative schemes for strongly relatively nonexpansive
mappings and maximal monotone operators, Appl. Math., Ser. B (Engl. Ed.), 25(2):199-208,
2010, https://doi.org/10.1007/s11766-010-2195-z.

L. Wei, H.Y. Zhou, The new iterative scheme with errors of zero point for maximal monotone
operator in Banach space, Math. Appl., 19(1):101-105, 2006.

H.-K. Xu, Inequalities in banach spaces with applications, Nonlinear Anal., Theory Methods
Appl., 16(12):1127-1138, 2009, https://doi.org/10.1016/0362-546X(91)
90200-K.

Nonlinear Anal. Model. Control, 31(Online First):1-25, 2026


https://doi.org/10.1007/s11075-018-0626-8
https://doi.org/10.1007/s11766-010-2195-z
https://doi.org/10.1016/0362-546X(91)90200-K
https://doi.org/10.1016/0362-546X(91)90200-K
https://doi.org/10.15388/namc.2026.31.44410

	Introduction
	Preliminaries
	Main results
	Numerical example and remark
	References

