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Abstract. The excessive use of chemical fertilizers in agricultural farms poses a serious threat to
nearby water bodies, such as lakes, ponds, etc., by causing algal blooms in these water bodies and
also put agricultural sustainability at risk. This study deals with the use of algae-rich pond water
for irrigation, which impacts soil fertility through organic detritus. A nonlinear mathematical model
is formulated to analyze the ecological and agronomic impacts of this irrigation approach. The
formulation of the model takes into account that the detritus-based pond water used for irrigation
initially benefits the crop growth; but once it exceeds a certain threshold, reduces the crop yield.
Furthermore, the model demonstrates how nature-based solutions can be strategically integrated into
agricultural system to achieve long-term resilience. The study identifies key thresholds and behav-
ioral transitions by detecting a saddle-node, transcritical, and Hopf bifurcations within the proposed
mathematical model. To support analytical findings, we conduct numerical simulations that provide
a strong evidence of the agricultural ecosystem’s resilience particularly in maintaining the crop yield
under the modeled irrigation conditions. These simulations underscore the potential for managing
detritus density to optimize crop productivity while minimizing ecological risks. Findings of this
study can support the environment-friendly irrigation policies suited to different agroecological
regions. Study reveals that detritus-based irrigation promotes crop productivity up to a critical
threshold of detritus input, beyond which its effects turn inhibitory. Simultaneously, it suppresses
algal blooms, thereby uncovering a natural self-regulating mechanism with significant implications
for sustainable irrigation practices and nutrient management policies.
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1 Introduction

Agriculture stands as the cornerstone of human civilization, serving multiple critical
functions that extend far beyond food production. Beyond feeding the world and sup-
plying raw materials, agriculture underpins economies, sustains millions of livelihoods,
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strengthens community resilience, and secures food, economic, and environmental sta-
bility, making it indispensable for human development. The 2024 GRFC reports that 282
million people in 59 countries faced acute food insecurity in 2023, which is 24 million
more than 2022 and the highest level recorded since the report began [14].

Irrigation is an important process for vigorous growth and high productivity in agricul-
tural farms. It empowers farmers to cultivate crops even in regions where natural rainfall is
scarce. It prolongs growing seasons, increases yields, improves crop quality, and enhances
food security, particularly in arid regions where rainfall is insufficient [5]. To protect crops
from drought, irrigation acts as a crucial support system, making farming more resilient
and sustainable. To meet food demands, agricultural intensification has made irrigation
and fertilizer application essential in modern farming. However, this intensified agricul-
tural production comes with significant environmental consequences, since crops typi-
cally absorb only 30–50% of applied chemical fertilizers, the remainder washes away into
nearby water bodies, such as ponds [18]. This nutrient loading induces eutrophication,
with algal blooms decomposing into detritus, which releases nutrients through bacterial
action in a continuous cycle [20]. The majority of algal blooms are triggered by fertilizer
runoff entering into water bodies [1, 24]. Since India’s agriculture consumes over 80%
of the nation’s freshwater, climate change has created significant challenges to farmers
who rely on groundwater to safeguard their crops against unpredictable weather [23].
Detritus-laden water functions as natural biofertilizer, initially boosts the crop growth,
hence enhances the crop productivity but beyond a certain level of detritus, it impedes
plant development and compromises soil integrity [28].

Over the past few decades, mathematical models for algal blooms and their impact
on aquatic ecosystems and coastal regions have increasingly been developed. Di Toro
et al. [6] proposed a mass-balance-based mathematical model to investigate phytoplank-
ton dynamics as part of eutrophication control efforts. Numerous researchers have pro-
posed models addressing various aspects, such as plankton dynamics in homogeneous
environments [10], nutrient variations [9], and the influence of river and ocean flow
patterns [15, 25]. Misra [20] proposed a nonlinear model analyzing dissolved oxygen
depletion in lakes due to submerged macrophytes. The model incorporates interactions
among nutrients, algae, macrophytes, detritus, and dissolved oxygen, considering con-
tinuous nutrient inflow from agricultural runooff and domestic drainage. It highlights
how nutrient enrichment intensifies eutrophication, leading to increased algae and macro-
phytes biomass and detritus, which in turn reduces dissolved oxygen levels. Several
studies have also examined the critical role of excessive nutrient inflow, particularly
from agricultural runoff in the initiation and proliferation of algal blooms in lakes [2–
4, 12]. Dodds [7] indicated that the excessive algal proliferation is increasingly contribut-
ing to the long-term degradation of earth’s freshwater system, presenting a substantial
challenge to environmental stability and ecosystem health. Further, the study in [19]
emphasized the role of algae in recovering nitrogen and phosphorus-key waste derived
nutrients from aquatic systems and evaluated their contribution to enhance agricultural
productivity. Multiple studies have proposed mitigation strategies for algal blooms: Song
[26] showed that hydrodynamic conditions strongly shape reservoir algal blooms and
that targeted operations provide a promising mitigation strategy; Paerl et al. [21] empha-
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sized nutrient reduction with integrated watershed-scale and adaptive approaches under
climate change; Hamilton et al. [16] highlighted the need for dual nitrogen-phosphorus
reduction tailored to ecosystems; and Yu et al. [29] demonstrated the effectiveness of
modified clays in adsorbing and flocculating algal cells to disrupt bloom formation. Over
the past two decades, studies have shown that microalgae and cyanobacteria enhance crop
productivity by improving soil fertility, promoting plant growth, and increasing stress
tolerance as biofertilizers, biostimulants, and biopesticides, which support sustainable
agriculture by reducing chemical input use [11]. In this study [11], authors studied to
underscore the emerging significance of microalgal biomass in agriculture, especially
in the context of integrating wastewater treatment with sustainable crop production sys-
tems.

As pointed above, previous studies have primarily examined either eutrophication
and its control or crop yield maximization in isolation. Although the role of algae as
a biofertilizer has been acknowledged, most existing works emphasize its positive con-
tribution to crop productivity-typically modeled through Holling type-II functional re-
sponse [27], while overlooking the potential adverse effects that emerge when detritus
input surpasses a critical threshold. At moderate levels, detritus-based irrigation functions
as a natural fertilizer that enhances crop yield; however, beyond a certain threshold, it
becomes detrimental. The underlying mechanisms driving these dose-dependent effects
on crops and ecosystems remain poorly understood. To address this gap, we propose
and analyze a nonlinear mathematical model that explicitly incorporates the coupled
dynamics of crops, nutrients, algae, and detritus, thereby providing fresh insights into
sustainable nutrient management. In contrast to earlier approaches, our model accounts
for both the beneficial and inhibitory roles of detritus, while also uncovering bifurcation
dynamics not captured in previous frameworks. By directly linking pond ecology with
agricultural productivity, this study fills a critical gap in the literature and establishes
a novel mathematical foundation for developing nutrient recycling strategies that can
simultaneously mitigate algal bloom risks and optimize crop yield, particularly in water-
scarce regions. This study is motivated by the dual challenges of agricultural reliance
on chemical fertilizers and the ecological risks associated with nutrients runoff in water
bodies through agricultural fields causing eutrophication. In areas with limited water,
pond’s water containing detritus can be reused for irrigation. Primary objective centers on
identifying the critical threshold of detritus where beneficial growth promotion transitions
to detrimental effects on plant health, yield, and soil equilibrium. Through the analysis of
a formulated model, we seek to establish the optimal concentration range of algae-detritus
that maximizes agricultural productivity while simultaneously determining the tipping
point beyond, which additional organic loading becomes counterproductive.

2 Mathematical model

This section outlines the development of a nonlinear mathematical model with a focus
on agriculture crop, which is affected by detritus-based irrigation from pond water. The
proposed model is structured around four time-dependent variables, denoted as A(t),
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N(t), P (t), and D(t), representing the agriculture crop, cumulative concentration of
nutrients, algal density, and detritus density, respectively.

In the model formulation, we consider that the agricultural crop follows logistic growth
model with intrinsic growth rate r and carrying capacity L in absence of detritus-based
irrigation using pond’s water; however, its growth rate is affected when irrigated from
detritus enriched pond’s water. As outlined in the introduction, detritus-enriched water
has a promotive effect on crop growth at lower concentrations; however, beyond a critical
threshold, it inhibits crop development. To account this effect on crop growth rate and
assess the effect of detritus-based irrigation on crop yield, we formulate this relationship
by the nonlinear term r1D(m −D)A. This term captures both promotive and inhibitory
effects of detritus available in irrigation water on crop yield. Here it may be noted that
whenD < m, the presence of detritus in irrigation water promotes crop growth, and when
D > m, its effect is negative, here m is the threshold value of detritus, which determines
positive or negative impact on agriculture crop, and r1 is the per capita growth rate of
agriculture crop due to irrigation with detritus water. Further, formulating the model,
it is assumed that the nutrients enter into the pond continuously from various sources,
including domestic waste water, at a constant rate q, while depleting naturally at a rate
α0. The term q11A represents the nutrient influx from agricultural runoff, highlighting its
significant role in increasing the pond’s nutrient load and driving algal growth dynamics.
Algal biomass is assumed to be governed exclusively by nutrient availability in the pond.
Algae uptake the nutrients following a Holling type-II functional response, given by
βNP/(k + N), where k represents the half-saturation constant, and the parameter β
is the consumption rate of nutrients by algae. Thus nutrient uptake drives algal growth
with proportionality constant θ. Like all organisms, algae has a natural life span, and
after reaching maturity and reproducing, algae naturally die as part of their life cycle at
rate α1. When algae become densely populated, it can be removed from the pond, and it
results in a subsequent reduction in their density at a rate β10. Dead algal biomass in the
pond contributes to the formation of detritus, represented by the term π1α1P . The natural
depletion of detritus occurs at a rate denoted by δD and decomposition of detritus by bac-
terial activity, which facilitates its conversion into nutrients, is modeled by the term πδD.

Keeping in mind the above interactions between agriculture, nutrients, algae, and
detritus, we propose the following system of nonlinear ordinary differential equations:

dA

dt
= rA

(
1− A

L

)
+ r1D(m−D)A,

dN

dt
= q + q11A− α0N −

βNP

k +N
+ πδD,

dP

dt
=
θβNP

k +N
− α1P − β10P 2,

dD

dt
= π1α1P − δD.

(1)

The feasibility of algae persistence equilibrium requires the condition θβ − α1 > 0,
as inferred from the third equation of system (1). This condition is obtained by using the
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Figure 1. Schematic diagram for the model system (1).

fact that the per capita growth rate of algae caused by nutrients must be greater than its
natural mortality rate for persistence of algae. For biological relevance, the initial values
of A, N , P , and D, as well as all model parameters in (1), are taken to be nonnegative.
Figure 1 depicts the schematic framework of the assumptions and the model governing
algae dynamics and crop yield.

3 Model analysis

The nonlinear nature of system (1) makes it difficult to obtain the closed form solution,
and thus we proceed for the qualitative analysis of this system [22]. For this, first, we show
the feasibility of all equilibrium solutions and then investigate the stability properties of
these equilibrium solutions. Through this analysis, the long-term qualitative behavior of
the system’s solutions can be systematically understood and interpreted.

3.1 Equilibrium analysis

The model system represented by (1) is characterized by four equilibrium solutions.

1. Crop and algae-free equilibrium E0(0, q/α0, 0, 0) always exists. This equilibrium
indicates that, when both agricultural crops and algae are absent, the nutrient con-
centration at equilibrium is q/α0. Additionally, density of detritus at equilibrium
is also zero as detritus originates from the decomposition of algae.

2. Algae-free equilibriumE1(L, (q+q11L)/α0, 0, 0) always exists. This equilibrium
corresponds to the scenario where algae is absent, leading to no detritus formation.
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Here we obtain that in this equilibrium, the agricultural crop yield is L, while the
nutrient’s concentration in the pond is (q + q11L)/α0.

3. Crop-free equilibrium E2(0, N2, P2, D2) exists, provided that the condition kα1/
(θβ − α1) < q/α0 holds. In this equilibrium, the density of agricultural crop is
absent, and this depicts the dynamics of algae in the pond’s water, where nutrients
are reaching to the pond from other sources except agricultural runoff, and so only
the concentration of nutrients, densities of algae and detritus are present.

4. Coexisting equilibrium E∗(A∗, N∗, P ∗, D∗) is the coexisting equilibrium, where
all four dynamic variables are participating in the dynamics of the system and is
feasible only if N∗ > kα1/(θβ − α1).

The feasibility of these equilibria is demonstrated below. The equilibria of model (1)
can be determined by equating the growth rate of all dynamical variables to zero. Feasi-
bility of equilibria E0 and E1 can be easily shown and thus omitted.

Feasibility of crop-free equilibrium E2. The equilibrium point E2 can be determined
by solving the following system of algebraic equations:

q − α0N −
βNP

k +N
+ πδD = 0, (2)

θβN

k +N
− α1 − β10P = 0, (3)

π1α1P − δD = 0. (4)

From Eq. (3) we get

P =
1

β10

(
θβN

k +N
− α1

)
.

From above equation we may note that for positive value of P , we must have N >
kα1/(θβ − α1). Substituting the above result and Eq. (4) into Eq. (2), we obtain the
following equation in N :

f(N) = q − α0N +
1

β10

(
ππ1α1 −

βN

k +N

)(
θβN

k +N
− α1

)
= 0. (5)

The analysis of Eq. (5) yields that

(i) f(q/α0) < 0,
(ii) f(kα1/(θβ − α1) = q − kα0α1/(θβ − α1), and

(iii) f ′(N) < 0, provided that q/α0 > kα1/(θβ − α1).

Collectively, the above observations imply that Eq. (5) has a unique positive root in the
interval (kα1/(θβ − α1), q/α0).

Feasibility of coexisting equilibrium E∗(A∗, N∗, P ∗, D∗). The equilibrium E∗ can
be obtained by analyzing the following set of algebraic equations:

r

(
1− A

L

)
+ r1D(m−D) = 0, (6)

q + q11A− α0N −
βNP

k +N
+ πδD = 0, (7)
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θβN

k +N
− α1 − β10P = 0, (8)

π1α1P − δD = 0. (9)

Substituting Eqs. (9) and (6) into Eq. (7), we obtain the following equation in N and P :

q + q11L

[
1 +

r1π1α1P

rδ

(
m− π1α1P

δ

)]
− α0N +

(
ππ1α1 −

βN

k +N

)
P = 0. (10)

To assess the feasibility of the coexisting equilibrium, we analyze Eqs. (8) and (10).
Equation (8) reveals the following observations:

(i) At N = 0, P = −α1/β10,
(ii) at P = 0, N = kα1/(θβ − α1),

(iii) dP/dN > 0, and
(iv) P = (θβ − α1)/β10,

and N = −k are the asymptotes.
The analysis of Eq. (10) leads to the following key points:

(i) At N = 0, the resulting expression reduces to a quadratic equation in P , which
possesses one positive and one negative root,

(ii) at P = 0, N = (q + q11L)/α0,
(iii) N = −k is an asymptote, and
(iv) dP/dN < 0 for P > 0 and N < (q + q11L)/α0.

Based on the above analysis, we plot the isoclines (8) and (10) and note that they
intersect at unique point in the first quadrant if kα1/(θβ − α1) < (q + q11L)/α0. If this
condition is reversed, it becomes possible for the two isoclines to intersect at one, two,
or no points within the positive quadrant. Consequently, the model system (1) may admit
one, two, or no coexisting equilibria, depending on the parameter values. Figures 2 and 3
show the cases of all possible coexisting equilibrium.

Figure 2. Intersection of isoclines (8) (red) and (10) (blue) in system (1) for varying α1: (a) single cut at
α1 = 0.006; (b) single cut at α1 = 0.242. Remaining parameters are same as in Table 1.
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Figure 3. Intersection of isoclines (8) (red) and (10) (blue) in system (1) for varying α1: (a) two cuts at
α1 = 0.023; (b) no cut at α1 = 0.0243. Remaining parameters are same as in Table 1.

Table 1. Biological interpretation, units, and values of model parameters in system (1).

Parameter Description Unit Value
r Intrinsic growth rate of agriculture crop day−1 0.01
L Carrying capacity of total crop field kg (area)−1 100
r1 per capita growth rate of agriculture due L2 (µg2day)−1

to irrigation with algae-detritus water 0.001
m Threshold value of detritus in nearby water bodies µg L−1

having positive impact on agricultural crop production 12
q Influx rate of nutrients into considered water body µg (L day)−1 1
q11 Agricultural runoff rate µg (area) (L kg day)−1 0.01
α0 Natural depletion rate of nutrients day−1 0.3
β Consumption rate of nutrients by algae day−1 0.05
k Half-saturation constant due to nutrients µg L−1 3
π conversion efficiency of detritus into nutrients — 0.2
δ Natural depletion rate of detritus day−1 0.006
θ conversion efficiency of nutrient’s uptake to algae — 0.6
α1 Natural mortality rate of algae day−1 0.006
β10 removal rate of algae due to overcrowding of algae L(µg day)−1 0.001
π1 Conversion rate of algae into detritus — 0.7

3.2 Stability analysis

In this section, we conduct a thorough examination of the stability properties of the ob-
tained equilibria, shedding light on their impact on the system’s dynamic behavior. Such
analysis is essential for a more comprehensive understanding of the intrinsic dynamical
behavior of the model system (1). Jacobian matrix for the model system (1) is expressed
as

J =


r(1− 2A

L ) + r1D(m−D) 0 0 r1(m− 2D)A

q11 −α0 − βkP
(k+N)2 − βN

k+N πδ

0 θβkP
(k+N)2

θβN
k+N − α1 − 2β10P 0

0 0 π1α1 −δ

 .

(i) Stability of crop and algae-free equilibrium E0(0, q/α0, 0, 0). The eigenvalues
obtained by evaluating the Jacobian matrix at the equilibrium point E0 of system (1)
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are: r, −α0, −δ, and θβq/(kα0 + q) − α1. The eigenvalues −α0 and −δ are invariably
negative, whereas θβq/(kα0 + q)− α1 may be positive or negative, based on the values
assigned to the parameters, as one of the eigenvalues r consistently remains positive.
Thus, it can be interpreted that the crop and algae-free equilibrium E0 is unconditionally
unstable.

(ii) Stability of algae-free equilibrium E1(L, (q + q11L)/α0, 0, 0). It is noted that
three eigenvalues of the Jacobian matrix evaluated at the equilibrium point E1 are clearly
negative, whereas the fourth eigenvalue is positive or negative if α1 is less than or greater
than θβ(q + q11L)/(kα0 + (q + q11L)). Thus the equilibrium E1 is stable (or unstable)
if α1 > (or <) θβ(q + q11L)/(kα0 + (q + q11L)).

(iii) Stability of crop-free equilibrium E2(0, N2, P2, D2). For the model system (1),
Jacobian matrix calculated at E2 has one eigenvalue as r + r1D2(m −D2) and remain-
ing three eigenvalues can be determined by analyzing the following cubic polynomial
equation:

χ3 +A1χ
2 +A2χ+A3 = 0, (11)

where

A1 = δ + β10P2 + α0 +
βkP2

(k +N2)2
,

A2 = δ

(
β10P2 + α0 +

βkP2

(k +N2)2

)
+ β10P2

(
α0 +

βkP2

(k +N2)2

)
+
θkβ2N2P2

(k +N2)3
,

A3 = δβ10P2

(
α0 +

βkP2

(k +N2)2

)
+

δθβkP2

(k +N2)2

(
βN2

k +N2
− ππ1α1

)
.

Since A1 > 0, A3 > 0, and A1A2 − A3 > 0, therefore, applying the Routh–Hurwitz
criterion, we can assert that roots of Eq. (11) are either negative real numbers or complex
numbers with negative real parts. So equilibrium E2 is stable if r + r1D2(m−D2) < 0
and unstable if r+r1D2(m−D2) > 0. Here it may be noted that if r+r1D2(m−D2) < 0,
then feasibility of coexisting equilibrium violates.

(iv) Stability of coexisting equilibrium E∗(A∗, N∗, P ∗, D∗). The Jacobian matrix
for model system (1) evaluated at E∗ is

J∗ =


− rA

∗

L 0 0 −a14
q11 −a22 −a23 πδ
0 a32 −β10P ∗ 0
0 0 π1α1 −δ

 ,

where

a14 = −r1(m− 2D∗)A∗, a22 = α0 +
βkP ∗

(k +N∗)2
,

a23 =
βN∗

k +N∗
, a32 =

θβkP ∗

(k +N∗)2
.

The characteristic equation corresponding to Jacobian matrix J∗ is given by

ψ4 + B1ψ3 + B2ψ2 + B3ψ + B4 = 0,
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where

B1 = δ + β10P
∗ + a22 +

rA∗

L
,

B2 = a22β10P
∗ + a23a32 + (a22 + β10P

∗)

(
rA∗

L
+ δ

)
+
rA∗δ

L
,

B3 =
rA∗

L

[
δ(a22 + β10P

∗) + a22β10P
∗ + a23a32

]
+ δa22β10P

∗

+ δa32(a23 − ππ1α1),

B4 =
rA∗δ

L

(
a22β10P

∗ + a32(a23 − ππ1α1)
)
+ π1α1q11a14a32.

By the Routh–Hurwitz criterion, since B1 > 0, the equilibrium pointE∗ is asymptotically
stable if B3 > 0, B4 > 0, and B3(B1B2−B3)−B2

1B4 > 0. The local stability conditions
imply that after a threshold value of q11 (agricultural runoff rate), coefficient B4 may be
negative, and system may lose its stability, so q11 shows destabilizing effect on system
dynamics.

3.3 Global stability analysis

This subsection is devoted to derive the global stability conditions ofE∗ for which Lemma 1
is required.

Lemma 1. The set

Ω :=
{
(A,N, P,D) ∈ R4

+: 0 6 A 6 Am, 0 < N 6 Nm,

0 6 P 6 Pm, 0 6 D 6 Dm

}
,

where

Am = L

(
1 +

r1m

r

π1α1

δ
Pm

)
,

Nm =
1

α0

(
q + q11L

(
1 +

r1m

r

π1α1

δ
Pm

)
+ ππ1α1Pm

)
,

Pm =
(θβ − α1)

β10
, and Dm =

π1α1

δ
Pm,

contains the region of attraction for model system (1) and encompasses all trajectories
originating within the interior of the positive orthant [8, 17].

Theorem 1. Let the equilibrium pointE∗ exists uniquely in the positively invariant setΩ,
then the conditions ensuring the global stability of E∗ are given by

max

{
3

2

r21L

δr
(m+Dm +D∗)2,

9π2δθ

4α0

}
<

2

3

δβ10N
∗

(π1α1)2
, (12)

θ < min

{
2

3

α0r

Lq211
,
2α0β10

3

(k +N∗)2

N∗β2

}
. (13)
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Proof. We proceed to derive the conditions ensuring the global stability of the equilibrium
point E∗ by introducing a suitably defined positive definite function V as

V =

(
A−A∗ −A∗ ln A

A∗

)
+
θ

2
(N −N∗)2

+N∗
(
P − P ∗ − P ∗ ln P

P ∗

)
+
u

2
(D −D∗)2.

By differentiating V with respect to time t along the solution trajectories of system (1)
and simplifying the resulting expression, we obtain

dV

dt
= − r

L
(A−A∗)2 − θ

(
α0 +

βkP

(k +N)(k +N∗)

)
(N −N∗)2

− β10N∗(P − P ∗)2 − uδ(D −D∗)2 + r1(m−D −D∗)(A−A∗)(D −D∗)
+ θq11(A−A∗)(N −N∗) + θπδ(N −N∗)(D −D∗)

− θβNN∗

(k +N)(k +N∗)
(N −N∗)(P − P ∗) + uπ1α1(P − P ∗)(D −D∗).

Now, using the upper bound of D, we can choose a positive value of u and make dV/dt
to be negative definite, provided conditions (12) and (13) are satisfied.

Remark. Here it may be noted that the global stability conditions given by inequali-
ties (12) and (13) are easily satisfied for the small values of r1 and θ. This implies that
these parameters have destabilizing effect on the dynamics of the system.

4 Bifurcation analysis

In this section, we rigorously investigate the parameter regimes under which the model
system (1) exhibits qualitative changes in its dynamical behavior through the occur-
rence of various bifurcations. Bifurcation refers to a qualitative change in the behavior
of a dynamical system as the parameter value is varied, leading to the emergence of new
equilibrium points, periodic orbits, or chaotic dynamics.

4.1 Transcritical bifurcation

The examination of the model system (1) reveals that the equilibrium E1 remains stable if
θ < θ∗ = α1(kα0+q+q11L)/(β(q+q11L)). Furthermore, as θ > θ∗, the equilibriumE1

loses stability, leading the feasibility of equilibrium E∗. This suggests that when θ passes
a critical threshold θ∗, the model system (1) undergoes a significant qualitative change in
its stability behavior. This fundamental change is known as a transcritical bifurcation and
is formally presented in the following theorem.

Theorem 2. When θ attains the critical value θ∗, the model system (1) undergoes a trans-
critical bifurcation at the equilibrium point E1(L, (q + q11L)/α0, 0, 0) in forward direc-
tion if b < 0 and in backward direction if b > 0. The expression for b is provided in the
proof of theorem.
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Proof. At the boundary equilibrium point E1, the Jacobian matrix J possesses a simple
zero eigenvalue when the parameter θ attains the critical value θ = θ∗, implying that E1

is nonhyperbolic at θ = θ∗. To establish the occurrence of a transcritical bifurcation at
this point, let V = (v1, v2, v3, v4)

T andW = (w1, w2, w3, w4)
T be the respective charac-

teristic vectors of the matrices J |E1 and J |TE1
corresponding to zero characteristic value

at θ = θ∗. Denote the right-hand sides of dA/dt, dN/dt, dP/dt, dD/dt in the model
system (1) by G(1), G(2), G(3), and G(4), respectively, and G = (G(1),G(2),G(3),G(4))T.
Now, the Jacobian matrix at (E1, θ

∗) is given as

J(E1,θ∗) =


−r 0 0 r1mL
q11 −α0 −α1

θ∗ πδ
0 0 0 0
0 0 π1α1 −δ

 .

It is evident that the matrix J(E1,θ∗) has a single zero eigenvalue. By a routine computa-
tion, we obtain

V =

(
mr1π1α1L,

rπ1α1

α0

(
mr1q11L

r
+ δ

(
π − 1

π1θ∗

))
, δr, rπ1α1

)T

,

W = (0, 0, 1, 0)T, WTGθ(E1, θ
∗) = 0,

a =WT
[
DGθ(E1, θ

∗)
]
V =

α1rδ

θ∗
6= 0,

and

b =WT
[
D2Gθ(E1, θ

∗)(V,V)
]

= 2δr2
[

θβkπ1α1

(kα0 + q + q11L)2

(
mr1q11L

r
+ δ

(
π − 1

π1θ∗

))
− β10δ

]
.

It is evident from the above computation that, if b 6= 0, the system satisfies all the
conditions of Sotomayor’s theorem [22]. Since a is always positive, as a result, system (1)
undergoes a transcritical bifurcation at θ = θ∗ in forward direction if b < 0 and in
backward direction if b > 0.

4.2 Saddle-node bifurcation

In the model analysis, we have established that the system defined by (1) admits either one
or two coexisting equilibrium points, depending on the value of the bifurcation parameter
q11. This behavior is indicative for the occurrence of a saddle-node bifurcation, which
takes place when a pair of equilibrium points coalesce and annihilate each other at a
critical value of parameter q11 = q†11. At this bifurcation point, the Jacobian matrix at E∗

has a simple zero eigenvalue, while all other eigenvalues have nonzero negative real part.
The following theorem confirms the nondegeneracy of the bifurcation and verifies that the
system satisfies the transversality condition necessary for the occurrence of a saddle-node
bifurcation.
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Theorem 3. The model system (1) undergoes saddle-node bifurcation at q11 = q†11 in the
neighborhood of coexisting equilibrium, provided A 6= 0.

Proof. Under the assumption that a coexisting equilibrium exists, it has been shown
that the system may admit two distinct coexisting equilibria depending on the parameter
values. Let q11 = q†11 represent the critical parameter value at which the determinant of
the Jacobian matrix evaluated at the coexisting equilibrium point E∗ becomes zero, i.e.,
B4(E∗, q†11) = 0, thereby indicating the presence of a zero eigenvalue for the Jacobian
matrix. Let X = (x1, x2, x3, x4)

T and Y = (y1, y2, y3, y4)
T be the eigenvectors of J |E∗

and J |TE∗ corresponding to the eigenvalue 0 at q11 = q†11. Eigenvectors are obtained as
follows:

X =

(
r1
r
(m− 2D∗)L,

β10δ

θβkπ1α1
(k +N∗)2,

δ

π1α1
, 1

)T

,

Y =

(
q†11L

rA∗
, 1,

(k +N∗)2

θβkP ∗

(
α0 +

βkP ∗

(k +N∗)2

)
, π +

r1q
†
11L

rδ
(m− 2D∗)

)T

.

Denote the right-hand sides of dA/dt, dN/dt, dP/dt, dD/dt in system (1) by G(1), G(2),
G(3), and G(4), respectively, and G = (G(1),G(2),G(3),G(4))T. Then YTGq11(E∗, q

†
11) =

A∗ 6= 0 and

A = YT ·
[
D2G(X ,X )

]∣∣
(E∗,q†11)

=

[
−2rx21

L
+ 2r1(m− 2D∗)x1x4 − 2r1x

2
4A
∗
]
y1

+
2βkx2

(k +N∗)2

(
x2P

∗

k +N∗
− x3

)
y2

+

[
2θβkx3

(k +N∗)2

(
x3 −

x2P
∗

k +N∗

)
− 2β10x

2
3

]
y3

= −2r1q
†
11L

r
− 2α0

(
β10δ

θβkπ1α1

)2

(k +N∗)3 − 2β10δ
2

θπ2
1α

2
1

.

From the Sotomayor’s theorem [22], above calculation ensures that the model system (1)
undergoes a saddle-node bifurcation at q11 = q†11 around E∗ if A 6= 0.

4.3 Hopf bifurcation

We observe that variations in the parameter q11 may destabilize system (1) in the neigh-
borhood of the equilibrium E∗, indicating the possible onset of a Hopf bifurcation. The
following theorem establishes the precise conditions under which a Hopf bifurcation
occurs at E∗(A∗, N∗, P ∗, D∗) with respect to the agricultural runoff rate q11.

Theorem 4. The system described by (1) underlies Hopf bifurcation at the equilibrium
E∗ when q11 reaches to a threshold value q∗11, provided that below stated conditions are
satisfied.

(i) B3(q∗11) > 0, B4(q∗11) > 0,
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(ii) B3(q∗11)(B1(q∗11)B2(q∗11)− B3(q∗11))− B21(q∗11)B4(q∗11) = 0,
(iii) [Re(dψj/dq11)]q11=q∗11 6= 0.

Proof. The proof of this theorem follows a similar approach to that in [13, 22].

5 Numerical simulation

In this section, numerical simulations are employed to graphically represent and validate
the analytical findings derived in the earlier sections. A comprehensive list of the param-
eters utilized in our simulations is provided in Table 1. Since our investigation does not
reliant on a specific case study but rather delves into the qualitative aspects of the proposed
system (1), our approach prioritizes understanding its behavior rather than quantifying
it. Therefore, we opt for a simulated parameter set detailed in Table 1 to achieve this
goal. Some of these parameter values are derived from the literature [2, 20, 27], while
others are assumed based on a balance between empirical evidence and maintaining
internal consistency within the model. This ensures that our simulations are realistic and
meaningful. Employing the parameter values in Table 1, we determine the components of
the interior equilibrium point E∗, which are as follows:

A∗ ≈ 198.76 kg(area)−1, N∗ ≈ 8.07 µgL−1,

P ∗ ≈ 15.87 µgL−1, D∗ ≈ 11.11 µgL−1.

The matrix J∗ has subsequent eigenvalues:

−0.3194, −0.0300, −0.0059 + 0.0115i, −0.0059− 0.0115i.

Here we can see that for selected set of parameter values, the two eigenvalues are neg-
ative, and other two with negative real part, thus the coexisting equilibrium is locally
asymptotically stable for this set of parameter values. The simulations are implemented
using the ode45 solver of MATLAB R2018b, supplemented by numerical continuation
techniques via MATCONT package. Figure 4 displays solution trajectories of the model
system (1), originating from various initial conditions in AND-space, which consistently
converge to the equilibriumE∗, and this dynamic behavior validates the global asymptotic
stability of E∗ in AND-space within the region Ω. Figure 5(a) illustrates a transcritical
bifurcation between the algae-free equilibrium and the coexisting equilibrium with respect
to parameter θ for different values of q. The plot shows the variation in transcritical
bifurcation points (green dots) for different values of the parameter q. As θ decreases,
equilibrium value of the density of algae P ∗ decreases along different curves for each q.
At each green dot, two equilibrium branches intersect and exchange their stability, in-
dicating a transcritical bifurcation. For large value of q, bifurcation point shifts to the
left, showing bifurcation occurs at lower values of θ. This trend suggests that at elevated
values of q, algae can persist even when θ is relatively low. Further, the model system (1)
exhibits a transcritical bifurcation between the crop-free equilibrium and the coexisting
equilibrium as conversion of nutrients into algae θ varies, as demonstrated in Fig. 5(b),
which illustrates the occurrence of transcritical bifurcation with respect to parameter θ
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Figure 4. Plot illustrating the global stability of coexisting equilibrium E∗ in AND-space.
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Figure 5. Bifurcation plots for model system (1): (a) in the θP ∗-plane depicting variations with q, and (b) in the
θA∗-plane depicting variations with m. The green dot denotes the transcritical bifurcation point. Remaining
parameter values are same as in Table 1.

for different values of m. Each curve depicts the variation in the equilibrium value of
agriculture crop as a function of θ for a fixed value of m. As m increases, the curve
shifts rightward, indicating that the bifurcation occurs at higher values of θ. This trend
arises because, at higher values of m, the crop remains sustainable even under higher
nutrient conversion rate by algae. All trajectories exhibit a pronounced decline in A∗ as θ
increases, converging towards bifurcation point (green dot).

Figure 6 provides a comprehensive visualization of the system’s dynamical behavior
in response to variations in the parameter β, which represents the rate at which algae
consume nutrients. Figure 6(a) presents the bifurcation diagram of the model system (1)
in the βA∗-plane. This diagram shows how variations in β influence the equilibrium
value of the agriculture crop. The analysis reveals the presence of two supercritical Hopf
bifurcation points (as first Lyapunov coefficient is negative), denoted as H1 and H2,
occurring at β = βh1

≈ 0.05001 and β = βh2
≈ 0.09119, respectively. At low values
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(a) (b)

(c) (d)

Figure 6. (a) Bifurcation diagram of system (1) in the βA∗-plane for q11 = 0.128, showing a stable limit cycle
(green). (b)–(d) Phase portraits in the DPA-space for β = 0.049, 0.095. and 0.07, respectively. Magenta dots
indicate stable equilibria, while black dot denotes unstable equilibria. Remaining parameter values are as given
in Table 1.

of β, the crop yield remains stable, indicating that minimal consumption of nutrients
by algae allows the crop system to maintain a steady output. However, as β increases
and crosses the first critical threshold H1, the system loses its stability, giving rise to
oscillatory behavior in the crop yield. These oscillations represent periodic dynamics,
making the system’s future state less predictable and more sensitive to initial conditions.
As β continues to increase and surpasses the second critical threshold H2, the system
restabilizes. However, this stability is achieved at significantly reduced crop yield. This
pattern emerges due to the direct and substantial influence of β on algae density. In
the intermediate range of the parameter β, i.e., 0.05001 < β < 0.09119, the system’s
equilibrium becomes unstable, resulting in sustained oscillations. In this range of β, an
elevated nutrient consumption rate by algae promotes excessive algal growth, leading to
an accumulation of detritus, which in turn negatively affects crop yield. The subsequent
decline in crop reduces the rate of agricultural runoff, thereby diminishing the nutrient
availability for algal growth. This reduction in nutrient’s supply leads to a decline in algal
density, which subsequently lowers detritus density, allowing crop yield to recover. When
the parameter β becomes sufficiently large, the density of algae approaches to saturation
level within the system, which suppresses the periodic oscillations and restores the sys-
tem to a stable equilibrium state. With a further increase in the value of β, crop yield
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Figure 7. Hopf curve showing stability regions of the coexisting equilibrium E∗ in the mβ-plane (parameters
as in 6(a)) with blue and red regions denoting stable and unstable states.

diminishes progressively, ultimately resulting in the collapse of the interior equilibrium
and the appearance of a crop-free equilibrium state. Figures 6(b), 6(c), and 6(d) illustrate
the phase portraits of the system in the DPA-space for β = 0.049 < βh1

, β = 0.095 >
βh2 , and βh1 < β = 0.07 < βh2 , respectively. These plots provide further insight into
the nature and stability of the equilibrium E∗. Figures 6(b) and 6(c) show trajectories
converging to a stable equilibrium, marked by magenta dot. Figure 6(d) demonstrates the
presence of a stable limit cycle surrounding an unstable equilibrium (marked by black
dot), which corresponds to the parameter range between the two Hopf bifurcation points,
confirming the emergence of sustained oscillations in this regime.

An important question arises: what strategy should farmers adopt when, in a particular
agriculture field, consumption rate of nutrients by algae lies between two Hopf bifurcation
points, i.e., βh1

< β < βh2
. To address this, a two parameter bifurcation diagram in mβ-

plane has been constructed in Fig. 7. This diagram partitions the mβ-plane into regions
of stability and instability. This figure demarcates the regions of stability (blue) and
instability (red) for the model system (1) corresponding β and threshold value of detritus
m, which makes positive effect on crop yield. It is observed that the system remains stable
across a wide range of lower value of β and for both low and high values of m. However,
within an intermediate range of m, increasing β beyond a critical level drives the system
into an unstable regime, characterized by oscillatory dynamics likely emerging through
a Hopf bifurcation. This analysis reveals that an excessive rate of nutrient consumption
by algae can destabilize the system, particularly when the beneficial effects of detritus
on crop yield have not yet fully materialized, i.e., when m is moderate. To maintain
stable and high crop production, it is therefore crucial to regulate algal nutrient uptake
and ensure that the detritus threshold is either sufficiently low to yield early benefits or
sufficiently high to surpass the instability region. Hence, Fig. 7 highlights the importance
of managing both algal growth and organic matter recycling thresholds in agricultural
systems for ensuring sustainability and yield stability.

Figure 8 provides the detailed illustration of the dynamic behavior of crop yield in
relation to agricultural runoff rate q11, analysed through a bifurcation perspective. Figure
8(a) displays the equilibrium curve of crop yield with respect to q11. The curve indicates
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(a) (b)

(c) (d)

Figure 8. (a) Bifurcation diagram in the q11A∗-plane with the corresponding stable limit cycle in the q11DA
space with H denoting the Hopf point; (b), (c) phase portraits in the DPA-space for q11 = 0.1 and 0.18,
respectively (green dot: stable equilibrium, red dot: unstable equilibrium); (d) stable and unstable regions of the
coexisting equilibrium E∗ in the q11m-plane. Remaining parameters are same as in Table 1.

that for relatively low values of q11, the system resides in a stable equilibrium state.
However, as q11 increases, the equilibrium E∗ losses its stability via a supercritical Hopf
bifurcation occuring at critical threshold q∗11 ≈ 0.128. Beyond this bifurcation point,
agriculture crop starts oscillating. When q11 exceeds a specific threshold q∗11, the nutrient
concentration increases, leading to algae proliferation, which subsequently elevates detri-
tus density and ultimately results in a decline in crop yield. This reduction in crop biomass
leads to a decrease in nutrient levels originating from agricultural runoff, which in turn
suppresses algal formation. Consequently, the amount of detritus in the pond diminishes,
ultimately contributing to an increase in crop yield. This dynamics induces periodicity in
the solution trajectory. This transition is visually supported by the inset 3D-space, where
stable limit cycles in the DPA-space are illustrated. In Fig. 8(a), two specific values of
q11 are marked along the equilibrium curve: q11 = 0.1 (red dot) and q11 = 0.18 (blue
dot), and the corresponding dynamic trajectories in DPA-space are further examined.
Figure 8(b) illustrates the system’s behavior for q11 = 0.1 < q∗11, where the phase portrait
in the DPA-space exhibits a stable equilibrium, confirming the system’s convergence to
stable coexisting equilibrium, represented by green dot. Figure 8(c) reveals the dynamic
outcome for q11 = 0.18 > q∗11. Here the coexisting equilibrium becomes unstable, and
the system evolves towards a stable limit cycle, represented by brown closed trajectory.
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Figure 9. (a) Equilibrium curve showing a saddle-node bifurcation with respect to q11 for α1 = 0.023 with
SN and BP marking the saddle-node and transcritical bifurcation points, respectively; (b) basin of attraction
in A(0)P (0)-plane. Remaining parameter values are same as in Table 1.

This transition from a fixed point to a limit cycle characterizes the nonlinear oscillatory
behavior induced through the Hopf bifurcation. These subfigures collectively demonstrate
how increasing the agricultural runoff rate beyond a critical threshold destabilizes the
system and induces sustained oscillations in crop yield dynamics. To investigate the com-
bined effect of q11 and m on the stability of the equilibrium E∗ of system (1), a two
parameter bifurcation diagram in mq11-plane has been constructed in Fig. 8(d). This
diagram divides the parameter space into distinct regions, corresponding to stable and
unstable dynamics. The green and magenta regions represent parameter combinations for
which the equilibrium E∗ is stable and unstable, respectively, with the black curve mark-
ing the bifurcation boundary between these dynamic regimes. For lower values of q11, the
system exhibits stability across a wider range of m. Instability arises predominantly at
intermediate m values when q11 exceeds a critical threshold. As q11 increases further, the
system increasingly transitions into an unstable regime, indicating that higher q11 values
can significantly compromise system’s stability. The presence of a narrow stability band
at intermediate m underscores the heightened sensitivity to q11 in this parameter range.

Figure 9(a) shows that how the parameter q11 influences the equilibrium level of algae
density. In this figure, the equilibrium curve folds at the saddle-node (SN) point, where
q11 = q†11 = 0.007258, indicating the presence of a saddle-node bifurcation in the model
system. At the SN point, a stable and an unstable equilibrium collide and subsequently
annihilate each other, showing the occurrence of saddle-node bifurcation. Moreover, for
q11 > q‡11 = 0.019571, we have checked that algae-free equilibrium remains stable, indi-
cating bistability between the algae-free and coexisting equilibrium when q11 lies in the
range [0.0073, 0.0196]. This scenario shows that model system (1) has no coexisting equi-
librium for q11 < q†11, unique coexisting equilibrium for q11 > q‡11, and two coexisting
equilibrium if q11 ∈ (q†11, q

‡
11). It is evident that all solution trajectories converge either

to the stable coexisting equilibrium or to the stable algae-free equilibrium depending on
the initial values of A, N , P , and D. This indicates that the persistence or eradication of
algae in the considered aquatic ecosystem can be determined by the initial algal density.
To illustrate this, Fig. 9(b) presents the stability regions corresponding to the two stable
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attractors, based on the initial algae density and agricultural crops. Initial conditions
falling within the blue region lead the trajectories to converge to equilibrium E∗, whereas
those within the magenta region result in convergence to the algae-free equilibrium E1.

6 Conclusion

To meet the growing food demand driven by population increase, conventional agriculture
increasingly depends on chemical fertilizers. While these enhance yields for short term,
they contribute to soil degradation and water body contamination through agricultural
runoff. This study explores detritus-based irrigation as a sustainable alternative, high-
lighting its potential to reduce chemical fertilizer usage and control algal blooms. In this
study, a nonlinear dynamical model has been formulated and analyzed to investigate the
interaction between agricultural productivity and eutrophication driven by algae-detritus
dynamics in irrigated systems. The system admits four feasible equilibria: (i) crop and
algae-free equilibrium E0, (ii) algae-free equilibrium E1, (iii) crop-free equilibrium E2,
and (iv) coexisting equilibriumE∗. By using the Routh–Hurwitz criterion, it is shown that
the coexisting equilibrium is locally asymptotically stable; however, its global stability is
established using Lyapunov’s method under biologically relevant conditions. Numerical
simulations validate the analytical predictions, confirming stability patterns and bifurca-
tion scenarios while highlighting parameter regimes favorable for stable crop production.
Analytical results further uncover multiple equilibria and key bifurcations-transcritical,
saddle-node, and Hopf that drive transitions between stable and oscillatory dynamics,
thereby reinforcing both the reliability and the biological relevance of the model. The
emergence of transcritical and saddle-node bifurcations is established through the appli-
cation of Sotomayor’s theorem. The model system undergoes a transcritical bifurcation
at a critical value of conversion of nutrients into algae subject to a specific condition; as
conversion of nutrients into algae θ increases, the crop-free equilibrium becomes unstable
and the coexisting equilibrium emerges. Furthermore, the results indicate the occurrence
of a supercritical Hopf bifurcation as q11 surpasses a critical threshold. The analysis
reveals that exceeding a critical threshold in agricultural runoff intensifies nutrient con-
centration, which in turn stimulates algal overgrowth and detritus accumulation, leading
to a marked reduction in crop yield. Conversely, reduced runoff mitigates these effects,
allowing for crop recovery. This dynamic interaction between runoff, algae, detritus, and
crop yield gives rise to oscillatory behavior, emphasizing the critical role of nutrient
management in maintaining ecological balance and sustainable crop productivity. We
have shown the combined effect of “threshold value of detritus that makes positive effect
on crop”m and “consumption rate of nutrients by algae” β on the system’s stability, which
suggests the combined range of parameter values for system’s stability. Additionally, the
combined effect of “agricultural runoff rate” q11 and “threshold value of detritus that
makes positive effect on crop” m, on the system’s stability characteristics has also been
examined. A basin of attraction plot is constructed, illustrating that the system’s trajectory
converges to a particular equilibrium depending on the region from which the initial
conditions are selected. It is noteworthy that per capita growth rate of agriculture due to
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irrigation with algae-detritus water and conversion of nutrients into algae can destabilize
the system for their large values.

The bifurcation analysis in this study identifies critical thresholds in detritus man-
agement with direct implications for irrigation practices. Transcritical bifurcations mark
transition points where increasing nutrient-to-algae conversion efficiency shifts the system
from a stable coexistence state to crop-free or algae-free equilibria, underscoring the risks
of excessive organic loading. Saddle-node bifurcation indicates sudden creation or disap-
pearance of equilibria, revealing parameter ranges where crop production may collapse
abruptly. Likewise, Hopf bifurcations show that elevated agricultural runoff rate can in-
duce oscillatory dynamics in algal biomass and crop yield, generating undesirable boom-
bust cycles in crop productivity. Practically, these results highlight the necessity of main-
taining detritus inputs within moderate ranges to secure stable yields while preventing
algal overgrowth. At the policy level, the bifurcation thresholds offer a scientific basis for
defining safe recycling rates of algae-detritus water in irrigation programs, thereby align-
ing field-level practices with long-term ecological stability and agricultural resilience.

The model does not account for spatial heterogeneity, seasonal climatic variability,
or additional ecological interactions such as grazing and microbial competition, which
may further influence system dynamics. Future research could extend the model by in-
corporating stochastic rainfall patterns, groundwater dynamics, or spatial diffusion to
better reflect field-scale conditions. Coupling the framework with empirical field data
would also strengthen its predictive capability and support the design of practical, region-
specific nutrient and water management strategies. The findings directly inform irriga-
tion strategies by demonstrating that detritus-based irrigation can simultaneously enhance
crop productivity and mitigate algal blooms, thereby providing a theoretical foundation
for integrated nutrient and water management in agricultural ecosystems. At the field
level, farmers in water-scarce regions can adopt controlled reuse of algae-rich pond water
to improve soil fertility, reduce reliance on chemical fertilizers, and sustain long-term
yield stability. At the regional level, watershed-scale nutrient management programs can
incorporate detritus-based irrigation as a nature-based solution that balances agricultural
productivity with freshwater ecosystem protection. At the national level, policies promot-
ing farmer training, incentivizing community-managed algae-detritus ponds, and link-
ing irrigation subsidies to ecological thresholds identified by the model would support
widespread adoption. Embedding these practices into regional and national agricultural
planning frameworks may provide a practical pathway to strengthen food security, reduce
dependence on chemical fertilizers, and safeguard freshwater resources under changing
climatic conditions.

Conflicts of interest. The authors declare no conflicts of interest.

References

1. S. Chakraborty, U. Feudel, Harmful algal blooms: combining excitability and competitionn,
Theor. Ecol., 7(3):221–237, 2014, https://doi.org/10.1007/s12080-014-
0212-1.

Nonlinear Anal. Model. Control, 31(Online First):1–23, 2026

https://doi.org/10.1007/s12080-014-0212-1
https://doi.org/10.1007/s12080-014-0212-1
https://doi.org/10.15388/namc.2026.31.44411


22 A.K. Misra, P. Shukla

2. S. Chakraborty, P.K. Tiwari, S.K. Sasmal, A.K. Misra, J. Chattopadhyay, Effects of fertilizers
used in agricultural fields on algal blooms, Eur. Phys. J. Spec. Top., 226:2119–2133, 2017,
https://doi.org/10.1140/epjst/e2017-70031-7.

3. S. Chen, X. Chen, Y. Peng, K. Peng, A mathematical model of the effect of nitrogen and
phosphorus on the growth of blue-green algae population, Appl. Math. Modelling, 33(2):1097–
1106, 2009, https://doi.org/10.1016/j.apm.2008.01.001.

4. J.E. Cloern, Our evolving conceptual model of the coastal eutrophication problem, Mar. Ecol.
Prog. Ser., 210:223–253, 2001, https://doi.org/10.3354/meps210223.

5. R.O. Darko, S. Yuan, L. Hong, J. Liu, H. Yan, Irrigation, a productive tool for food security –
A review, Acta Agric. Scand. Sect. B, 66(3):191–206, 2016, https://doi.org/10.
1080/09064710.2015.1093654.

6. D.M. Di Toro, D.J. O’Connor, R.V. Thomann, A dynamic model of the phytoplankton
population in the Sacramento–San Joaquin delta, in Advances in Chemistry, American
Chemical Society, Washington, 1971, pp. 131–180, https://doi.org/10.1021/ba-
1971-0106.ch005.

7. W.K. Dodds, Freshwater Ecology: Concepts and Environmental Applications, Elsevier, Am-
sterdam, 2002.

8. P. Dubey, U.S. Dubey, B. Dubey, Modeling the dynamics of viral–host interaction during
treatment of productively infected cells and free virus involving total immune response,
Nonlinear Anal. Model. Control., 26(4):678–701, 2021, https://doi.org/10.15388/
namc.2021.26.21434.

9. W. Ebenhöh, C. Kohlmeier, P.J. Radford, The benthic biological submodel in the European
regional seas ecosystem model, Neth. J. Sea Res., 33(3–4):423–452, 1995, https://doi.
org/10.1016/0077-7579(95)90056-X.

10. A.M. Edwards, Adding detritus to a nutrient-phytoplankton-zooplankton model: A dynamical-
systems approach, J. Plankton Res., 23(4):389–413, 2001, https://doi.org/10.1093/
plankt/23.4.389.

11. A. Ferreira, C.R. Bastos, C. Marques dos Santos, F.G. Acién-Fernandez, L. Gouveia,
Algaeculture for agriculture: From past to future, Front. Agron., 5:1064041, 2023, https:
//doi.org/10.3389/fagro.2023.1064041.

12. P.J.S. Franks, Models of harmful algal blooms, Limnol. Oceanogr., 42(5, part 2):1273–1282,
1997, https://doi.org/10.4319/lo.1997.42.5_part_2.1273.

13. C. Gautam, M. Verma, Mathematical modeling of emission and control of carbon dioxide from
infrastructure expansion activities, Physica D, 470:134387, 2024, https://doi.org/10.
1016/j.physd.2024.134387.

14. H.G. Gebrihet, Y.H. Gebresilassie, Armed conflict and household food insecurity: Impacts and
coping strategies in the conflict-affected rural settings of Tigray, Ethiopia, Cogent Social Sci.,
11(1):2483392, 2025, https://doi.org/10.1080/23311886.2025.2483392.

15. J.P. Grover, K.W. Crane, J.W. Bakerand B.W. Brooks, D.L. Roelke, Spatial variation of harmful
algae and their toxins in flowing-water habitats: A theoretical exploration, J. Plankton Res.,
33(2):211–227, 2011, https://doi.org/10.1093/plankt/fbq070.

16. D.P. Hamilton, N. Salmaso, H.W. Paerl, Mitigating harmful cyanobacterial blooms: Strategies
for control of nitrogen and phosphorus loads, Aquat. Ecol., 50(3):351–366, 2016, https:
//doi.org/10.1007/s10452-016-9594-z.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1140/epjst/e2017-70031-7
https://doi.org/10.1016/j.apm.2008.01.001
https://doi.org/10.3354/meps210223
https://doi.org/10.1080/09064710.2015.1093654
https://doi.org/10.1080/09064710.2015.1093654
https://doi.org/10.1021/ba-1971-0106.ch005
https://doi.org/10.1021/ba-1971-0106.ch005
https://doi.org/10.15388/namc.2021.26.21434
https://doi.org/10.15388/namc.2021.26.21434
https://doi.org/10.1016/0077-7579(95)90056-X
https://doi.org/10.1016/0077-7579(95)90056-X
https://doi.org/10.1093/plankt/23.4.389
https://doi.org/10.1093/plankt/23.4.389
https://doi.org/10.3389/fagro.2023.1064041
https://doi.org/10.3389/fagro.2023.1064041
https://doi.org/10.4319/lo.1997.42.5_part_2.1273
https://doi.org/10.1016/j.physd.2024.134387
https://doi.org/10.1016/j.physd.2024.134387
https://doi.org/10.1080/23311886.2025.2483392
https://doi.org/10.1093/plankt/fbq070
https://doi.org/10.1007/s10452-016-9594-z
https://doi.org/10.1007/s10452-016-9594-z
https://www.journals.vu.lt/nonlinear-analysis


Modeling the impact of detritus-based irrigation on agricultural crop production 23

17. S. Jatav, S. Sundar, A. Malviya, A mathematical model for degradation of forest area by
industrialization causing migration of wildlife species, Nonlinear Anal. Model. Control., 30(5):
874–891, 2025, https://doi.org/10.15388/namc.2025.30.42247.

18. N. Lehnert, H.T. Dong, J.B. Harland, A.P. Hunt, C.J. White, Reversing nitrogen fixation, Nat.
Rev. Chem., 2(10):278–289, 2018.

19. T. Mahmood, M. ur Rahman, M. Arfan, S.I. Kayani, M. Sun, Mathematical study of algae as
a bio-fertilizer using fractal-fractional dynamic model, Math. Comput. Simul., 203:207–222,
2023, https://doi.org/10.1016/j.matcom.2022.06.028.

20. A.K. Misra, Modeling the depletion of dissolved oxygen in a lake due to submerged
macrophytes, Nonlinear Anal. Model. Control., 15(2):185–198, 2010, https://doi.org/
10.15388/NA.2010.15.2.14353.

21. H.W. Paerl, T.G. Otten, R. Kudela, Mitigating the expansion of harmful algal blooms across the
freshwater-to-marine continuum, Environ. Sci. Technol., 52(10):5519–5529, 2018, https:
//doi.org/10.1021/acs.est.7b05950.

22. L. Perko, Differential Equations and Dynamical Systems, Springer, New york, 2001, https:
//doi.org/10.1007/978-1-4613-0003-8.

23. P. Roy, S.C. Pal, R. Chakrabortty, I. Chowdhuri, A. Saha, M. Shit, Climate change and
groundwater overdraft impacts on agricultural drought in India: Vulnerability assessment,
food security measures and policy recommendation, Sci. Total Environ., 849:157850, 2022,
https://doi.org/10.1016/j.scitotenv.2022.157850.

24. B. Singh, E. Craswell, Fertilizers and nitrate pollution of surface and ground water: An in-
creasingly pervasive global problem, SN Appl. Sci., 3(4):518, 2021, https://doi.org/
10.1007/s42452-021-04521-8.

25. J. Solé, E. Garcia-Ladona, M. Estrada, The role of selective predation in harmful algal blooms,
J. Mar. Syst., 62(1–2):46–54, 2006, https://doi.org/10.1016/j.jmarsys.2006.
04.002.

26. Y. Song, Hydrodynamic impacts on algal blooms in reservoirs and bloom mitigation using
reservoir operation strategies: A review, J. Hydrol., 620:129375, 2023, https://doi.
org/10.1016/j.jhydrol.2023.129375.

27. P.K. Tiwari, A.K. Misra, E. Venturino, The role of algae in agriculture: A mathematical
study, J. Biol. Phys., 43(2):297–314, 2017, https://doi.org/10.1007/s10867-
017-9453-8.

28. J. Urra, I. Alkorta, C. Garbisu, Potential benefits and risks for soil health derived from the
use of organic amendments in agriculture, Agronomy, 9(9):542, 2019, https://doi.org/
10.3390/agronomy9090542.

29. Z. Yu, X. Song, X. Cao, Y. Liu, Mitigation of harmful algal blooms using modified clays:
Theory, mechanisms, and applications, Harmful Algae, 69:48–64, 2017, https://doi.
org/10.1016/j.hal.2017.09.004.

Nonlinear Anal. Model. Control, 31(Online First):1–23, 2026

https://doi.org/10.15388/namc.2025.30.42247
https://doi.org/10.1016/j.matcom.2022.06.028
https://doi.org/10.15388/NA.2010.15.2.14353
https://doi.org/10.15388/NA.2010.15.2.14353
https://doi.org/10.1021/acs.est.7b05950
https://doi.org/10.1021/acs.est.7b05950
https://doi.org/10.1007/978-1-4613-0003-8
https://doi.org/10.1007/978-1-4613-0003-8
https://doi.org/10.1016/j.scitotenv.2022.157850
https://doi.org/10.1007/s42452-021-04521-8
https://doi.org/10.1007/s42452-021-04521-8
https://doi.org/10.1016/j.jmarsys.2006.04.002
https://doi.org/10.1016/j.jmarsys.2006.04.002
https://doi.org/10.1016/j.jhydrol.2023.129375
https://doi.org/10.1016/j.jhydrol.2023.129375
https://doi.org/10.1007/s10867-017-9453-8
https://doi.org/10.1007/s10867-017-9453-8
https://doi.org/10.3390/agronomy9090542
https://doi.org/10.3390/agronomy9090542
https://doi.org/10.1016/j.hal.2017.09.004
https://doi.org/10.1016/j.hal.2017.09.004
https://doi.org/10.15388/namc.2026.31.44411

	Introduction
	Mathematical model
	Model analysis
	Equilibrium analysis
	Stability analysis
	Global stability analysis 

	Bifurcation analysis
	Transcritical bifurcation
	Saddle-node bifurcation
	Hopf bifurcation

	Numerical simulation
	Conclusion
	References

