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Abstract. In this paper, we investigated the problem of the finite-time boundedness and finite-
time passivity for neural networks with time-varying delays. A triple, quadrable and five integral
terms with the delay information are introduced in the new Lyapunov–Krasovskii functional (LKF).
Based on the auxiliary integral inequality, Writinger integral inequality and Jensen’s inequality,
several sufficient conditions are derived. Finally, numerical examples are provided to verify the
effectiveness of the proposed criterion. There results are compared with the existing results.
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1 Introduction

Recently, neural networks have received much attention of their extensive applications
in signal processing, solving optimization problems, pattern recognition, pattern classifi-
cation, image processing, model identification and other engineering fields. The stability
problem of neural networks with time-varying delays has been deeply investigated in
[8–10, 12, 25, 37]. Time-delay phenomena are inevitable in studying real systems. The
existence of time delay makes the system dynamic performance worse or even leads
to system instability. Therefore, the stability and control problem of time-delay system
have attracted a lot of scholars attention, and some nice results have been obtained on
linear and nonlinear time-delay neural networks during the past few decades. More-
over, the delay-dependent stability conditions are generally less conservative than delay-
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independent conditions, in particularly when the size of the delay is small. Therefore,
considerable attention has been focused on the derivation of delay-dependent stability
results, and many effective approaches have been provided to reduce the conservatism of
stability results for further improving the quality of delay-dependent stability criteria.
Also, due to the finite speed of information processing in the implementation of the
network, time delay occurs in many neural networks; see [22,29,30]. It is well known that
time delay often causes undesirable dynamic behaviors such as oscillation and instability
of the networks. Thus, delay-dependent stability and stabilization problem for neural
networks with time delay have been paid more attention than delay-independent ones
because the information on the size of time delays is utilized in delay-dependent criteria,
which lead to reduce the conservatism of stability and stabilization criteria, (see [24, 31]
and references therein).

In recent years, as a powerful tool, passivity has played an important role in the
network control, process control, group coordination, analysis, design of linear and non-
linear systems, energy management and so on. Thus, passivity theory has become a most
focused topic in the recent years. The problems of passivity and passification have been
an active area of research over the last ten years due to its importance in engineering
applications such as in safety-critical and high-integrity systems [19]. The essence of the
passivity theory is that the passive properties of a system can keep the system internal
stability. This class of systems was introduced by Krasovskii and Lidskii in 1961 [11].
Since then, the passivity of neural networks with delays have been studied in [13, 34, 36].
Based on the Lyapunov–Krasovskii method and utilization of zero equalities, the passivity
properties for delayed neural networks were studied in [13]. However, in most existing
works on the passivity, it is assumed that the input and output variables are only dependent
on the time. But, in reality, the input and output variables are not only dependent on the
time, but also intensively dependent on space variable in many circumstances. Thus, it is
important and interesting to study the passivity of systems in which the input and output
variables are varied with the time and space variables. Several sufficient conditions on
passivity were derived for various neural networks such as time-invariant, time-varying,
uncertain and stochastic network models.

At present, many researches have been extensively developed the area of finite-time
stability for neural networks, see, for instance, [4–7,18,27,28]. Also, finite-time bounded-
ness and stability results are investigated in [1,33,35]. Actually, it may be more reasonable
that passivity is achieved over a finite-time interval in many practical applications. Thus,
it is of great significance to study finite-time dynamical behaviors, which has become
a very hot research topic recently [2,23]. Regrettably, few researchers devoted themselves
to investigating the finite-time passivity of finite-time passive filtering for neutral system
is studied in [2]. The finite-time passive control for nonlinear system with time delays was
reported in [23]. In [33], the results on finite-time stability and H∞ control of switched
neutral systems using the average dwell time approach are proposed.

On the other hand, in recent years, many researchers have extensively investigated
neutral-type neural networks and systems with time-varying delays, see, for instance,
[14, 26]. There are many new methods expressed in less conservative results for neutral-
type systems. Delay-dependent neutral-type neural networks with mixed random-time
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varying delays have been investigated by employing LMI technique in [22]. In [27],
the authors have studied finite-time neutral delay uncertain neural networks. Passivity
analysis for neural networks of neutral type has been studied in [32]. The passivity anal-
ysis for memristor-based stochastic BAM neural networks of neutral type was presented
in [26]. To the best of the authors’ knowledge up to now, the finite-time passivity of
neural networks with neutral-type time-varying delays has not been completely studied in
the literature, which motivates our research in this paper.

With the above motivation, in this article, the issue of finite-time boundedness and
finite-time passivity criteria of neutral-type neural networks with time-varying delay based
on the auxiliary function-based integral inequality technique is explored. As result, in this
note, there still exists some less conservatism for neural networks with interval time-
varying delay to be further improved. To achieve this, at the end, several numerical
examples are addressed to show the effectiveness of the developed stability criteria. The
highlights and major contributions of this paper are reflected in the subsequent key points:

(i) In this paper, we considered the system with time-varying delays, additionally the
effect of neutral delay has also been taken into account to showing feasibility on
a problem.

(ii) Some simplest LMI-based criterion has been launched with the help of integral
inequality technique together with the auxiliary function-based integral inequality
combined with Writinger integral inequality, Jensen’s inequality.

(iii) Then we derived finite-time boundedness, finite-stability and finite time passivity
conditions in the theorems.

(iv) Several examples have been investigated to verify the correctness of the main
theorem and the corollaries.

The outline of the paper is structured as follows. In Section 2, the system models
and some necessary mathematical preliminaries are declared. In Section 3, we present the
main results for the neural network model in which neutral delay is taken into account.
Simulation examples are given in Section 4, and conclusions follow in Section 5.

Notations. Rn denotes the n-dimensional Euclidean space, and Rm×n is the set of all
m × n real matrices. The superscript “T” denotes matrix transposition, and A > B
(respectively, A < B), where A and B are symmetric matrices (respectively, posi-
tive definite). ‖·‖ denotes the Euclidean norm in Rn. If Q is a square matrix, λmax(Q)
(respectively, λmin(Q)) means the largest (respectively, smallest) eigenvalue of Q. The
asterisk “∗” in a symmetric matrix is used to denote term, which is induced by symmetry;
diag{·} stands for the diagonal matrix.

2 Problem formulation and preliminaries

Consider the neutral-type neural networks with time-varying delays as follows:

ẋ(t)−Dẋ(t− d) = −Ax(t) + Bf
(
x(t)

)
+ Cf

(
x
(
t− h(t)

))
+ Ew(t), (1)

y(t) = Gf
(
x(t)

)
+ Hw(t), (2)

x(θ) = φ(θ), θ ∈ [−Hd, 0]. (3)
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where x(t) ∈ Rn is the neural state vector, v(t) is the exogenous disturbance input vector
belongs to L2[0,∞), and y(t) is the output vector of the neural networks, f(x(t)) is the
neuron activation function, A = diag{a1, a2, . . . , an} > 0 is a diagonal matrix, B, C,
D and E are connection weight matrices. φ(θ) denotes the continuous vector-valued
initial function. h(t) denotes the time-varying delay, and d is neutral delay. We define the
interval tk+1− tk=hk +∆hk 6 h+∆h(t). Here |∆h(t)| < ρ < h, where ρ is very small
scalar. The intervals can be written as tk = t− (t− tk) = t−h(t), k = 0, 1, 2, . . . , where
0 6 h(t) 6 h 6 h+ ρ, ḣ(t) 6 µ, Hd = max{h, d}.

Assumption 1. For a given positive parameter δ, the external disturbance input w(t) is
time varying and satisfies

T∫
0

wT(t)w(t) dt 6 δ, δ > 0.

Assumption 2. The activation functions satisfy the following condition for any s = 1,
2, . . . , n, there exist constants %−i , %+i such that

%−i 6
fs(x1)− fs(x2)

x1 − x2
6 %+i ∀x1, x2 ∈ R, x1 6= x2.

For presentation convenience, we denote

∆1 = diag
{
%−1 %

+
1 , %

−
2 %

+
2 , . . . , %

−
n %

+
n

}
,

∆2 = diag

{
%−1 + %+1

2
,
%−2 + %+2

2
, . . . ,

%−n + %+n
2

}
.

Definition 1 [Finite-time boundedness]. (See [1].) For a given time constant c1 > 0,
δ > 0, T and symmetric matrix R > 0, the neural networks (1)–(3) is said to be finite-
time bounded with respect to (c1, c2, T,R, δ) if there exist constants c2 > c1 > 0 such
that

xT(t0)Rx(t0) 6 c1 =⇒ xT(t)Rx(t) 6 c2 ∀t0 ∈ [−Hd, 0], t ∈ [0, T ].

Definition 2 [Finite-time stability]. (See [33].) For a given time constant c1 > 0, T
and symmetric matrix R > 0, the neural networks (1)–(3) with w(t) = 0 is said to be
finite-time stable with respect to (c1, c2, T,R) if there exist constants c2 > c1 > 0 such
that

xT(t0)Rx(t0) 6 c1 =⇒ xT(t)Rx(t) 6 c2 ∀t0 ∈ [−Hd, 0], t ∈ [0, T ].

Definition 3 [Finite-time passivity]. (See [23].) System (1)–(3) is said to be a finite-time
passive with respect to (c1, c2, R, γ, δ), where 0 < c1 < c2, γ is a prescribed dissipation
performance level γ > 0 and R > 0 if the following conditions holds:
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(a) System (1)–(3) is finite-time bounded for all external disturbances w(t);
(b) Under zero initial condition, the following relation hold for a given positive scalar

γ > 0:

T∫
0

wT(t)y(t) dt > γ

T∫
0

wT(t)w(t) dt.

Lemma 1. (See [20].) For a positive definite matrix M , a differentiable function x(u),
u ∈ (α, β), and a polynomial auxiliary function pi(u) = (u−α)i, the following inequality
holds for 0 6 n 6 3:

β∫
α

ẋT(θ)Mẋ(θ) dθ >
n∑
k=0

2k + 1

β − α
ΠT
kMΠk,

where

Π0 = x(β)− x(α), Π1 = x(β) + x(α)− 2

β − α

β∫
α

x(θ) dθ,

Π2 = x(β)− x(α) +
6

β − α

β∫
α

x(θ) dθ − 12

(β − α)2

β∫
α

β∫
ζ

x(θ) dθ dζ,

Π3 = x(β) + x(α)− 12

β − α

β∫
α

x(θ) dθ +
60

(β − α)2

β∫
α

β∫
ζ

x(θ) dθ dζ

− 120

(β − α)3

β∫
α

β∫
ς

β∫
ζ

x(θ) dθ dζ dς.

Lemma 2. (See [21].) For any constant matrix M > 0, the following inequality holds
for all continuously differentiable function x in [α, β]→ Rn:

(β − α)

β∫
α

xT(s)Mx(s) ds >

[ β∫
α

x(s) ds

]T
M

[ β∫
α

x(s) ds

]
+ 3ΠTMΠ,

where Π =
∫ β
α
x(s) ds− (2/(β − α))

∫ β
α

∫ s
α
x(u) duds.

Lemma 3 [Jensen’s inequality]. (See [3].) For any constant matrix M ∈ Rm×m, M =
MT > 0, take scalars a < b and vector function x(s) : [a, b] ∈ Rn such that the following
integration is well defined, then

(b− a)

b∫
a

xT(s)Mx(s) ds >

[ b∫
a

x(s) ds

]T
M

[ b∫
a

x(s) ds

]
,
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(b− a)2

[ b∫
a

b∫
θ

xT(s)Mx(s) dsdθ

]
> 2

[ b∫
a

b∫
θ

x(s) dsdθ

]T
M

[ b∫
a

b∫
θ

x(s) dsdθ

]
,

(b− a)3

[ b∫
a

b∫
θ

b∫
λ

x(s)TMx(s) dsdθ dλ

]

> 6

[ b∫
a

b∫
θ

b∫
λ

x(s) dsdθ dλ

]T
M

[ b∫
a

b∫
θ

b∫
λ

x(s) dsdθ dλ

]
.

3 Main results

3.1 Finite-time boundedness

In this section, we investigate finite-time boundedness for the following delayed neural
networks (1)–(3):

ẋ(t) = −Ax(t) + Bf
(
x(t)

)
+ Cf

(
x
(
t− h(t)

)
+ Dẋ(t− d) + Ew(t), (4)

x(θ) = φ(θ) dθ ∈ [−Hd, 0], (5)

where φ(θ) is a continuous vector-valued initial function, and we define the following
vectors:

ξT(t) = col

[
xT(t), xT

(
t− h(t)

)
, xT(t− h), fT

(
x(t)

)
, fT

(
x
(
t− h(t)

))
, ẋ(t)

ẋ(t− d),

t∫
t−h(t)

xT(s) ds,

t−h(t)∫
t−h

xT(s) ds,

0∫
−h(t)

t∫
t+θ

xT(s) dsdθ

−h(t)∫
−h

t∫
t+θ

xT(s) dsdθ,

0∫
−h(t)

0∫
ν

t∫
t+θ

xT(s) dsdθ dν,

−h(t)∫
−h

0∫
ν

t∫
t+θ

ẋT(s) dsdθ dν, wT(t)

]
,

ek = col
[
0(k−1)n×n, In, 0(k−1)n×n

]
, k = (1, 2, . . . , 14).

Theorem 1. For given scalars h, µ, d, δ, α, β, c1, c2 and T , the neural networks (4)–(5)
is finite-time bounded if there exist positive symmetric matrices P , Qi (i = 1, 2, . . . , 10),
any diagonal matrices U , S and matrices N1, N2 with appropriate dimensions such that
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the following LMIs holds:

Θ̂ = Υκ − e1αPeT1 − e14αIeT14 < 0, (6)

where
Υκ = Υ1 + Υ2 + · · ·+ Υ11,

λ1c2e−αT > Λc1 + δ
(
1− eαT

)
, (7)

where

Υ1 = −2e1PAe
T
1 + 2e1PBe

T
4 + 2e1PCe

T
5 + 2e1PDe

T
7 + 2αe1PEe

T
14,

Υ2 = e1Q1e
T
1 − e3Q1e

T
3 + e1Q2e

T
1 − (1− µ)e2Q2e

T
2 ,

Υ3 = e6Q3e
T
6 − e7Q3e

T
7 + e4Q4e

T
4 − e5Q4e

T
5 ,

Υ4 = he1Q5e
T
1 +

1

h
e9Q5e

T
9 −

3

h

[
eT9 −

2

h
eT11

]T
Q5

[
eT9 −

2

h
eT11

]
− 1

h+ ρ
e8Q5e

T
8 −

3

h+ ρ

[
eT8 −

2

h+ ρ
eT10

]T
Q5

[
eT8 −

2

h+ ρ
eT10

]
,

Υ5 = he6Q6e
T
6 −

1

h

[
eT1 − eT3

]T
Q6

[
eT1 − eT3

]
− 3

h

[
eT1 + eT3 −

2

h
eT8 −

2

h
eT9

]T
Q6

×
[
eT1 + eT3 −

2

h
eT8 −

2

h
eT9

]
− 5

h

[
eT1 − eT3 +

6

h
eT8 +

6

h
eT9 −

12

h2
eT10 −

12

h2
eT11

]T
×Q6

[
eT1 − eT3 +

6

h
eT8 +

6

h
eT9 −

12

h2
eT10 −

12

h2
eT11

]
− 7

h

[
eT1 + eT3 −

12

h
eT8 −

12

h
eT9 +

60

h2
eT10 +

60

h2
eT11 −

120

h3
eT12 −

120

h3
eT13

]T
×Q6

[
eT1 + eT3 −

12

h
eT8 −

12

h
eT9 +

60

h2
eT10 +

60

h2
eT11 −

120

h3
eT12 −

120

h3
eT13

]
,

Υ6 =
h2

2
e1Q7e

T
1 −

2

h2
[
eT10 + eT11

]T
Q7

[
eT10 + eT11

]
,

Υ7 =
h2

2
e6Q8e

T
6 − 2

[
eT1 −

1

h
eT8 −

1

h
eT9

]T
Q8

[
eT1 −

1

h
eT8 −

1

h
eT9

]
,

Υ8 =
h3

6
e6Q9e

T
6 − 6h

[
1

2
eT1 −

1

h2
eT10 −

1

h2
eT11

]T
Q9

[
1

2
eT1 −

1

h2
eT10 −

1

h2
eT11

]
,

Υ9 =
h4

24
e6Q10e

T
6 − 24h2

[
1

6
eT1 −

1

h3
eT12 −

1

h3
eT13

]T
Q10

[
1

6
eT1 −

1

h3
eT12 −

1

h3
eT13

]
,

Υ10 = 2[e1 + e6](N1 +N2)
[
−AeT1 + BeT4 + CeT5 + DeT7 + Ee14 − e6

]
,

Υ11 = −e1∆1Ue
T
1 + e1∆2Ue

T
4 − e4UeT4 − e2∆1Se

T
2 + e2∆2Se

T
5 − e5SeT5 .
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Consider

λ1 = λmin(P̄ ), λ2 = λmax(P̄ ), λ3 = λmax(Q̄1), λ4 = λmax(Q̄2),

λ5 = λmax(Q̄3), λ6 = λmax(Q̄4), λ7 = λmax(Q̄5), λ8 = λmax(Q̄6),

λ9 = λmax(Q̄7), λ10 = λmax(Q̄8), λ11 = λmax(Q̄9), λ12 = λmax(Q̄10).

Proof. Consider the following Lyapunov–Krasovskii functional:

V (xt, t) =

9∑
k=1

Vk
(
x(t)

)
,

where

V1(xt, t) = xT(t)Px(t), V2(xt, t) =

t∫
t−h

xT(s)Q1x(s) ds+

t∫
t−h(t)

xT(s)Q2x(s) ds,

V3(xt, t) =

t∫
t−d

ẋT(s)Q3ẋ(s) ds+

t∫
t−h(t)

fT(x(s))Q4f
(
x(s)

)
ds,

V4(xt, t) =

0∫
−h

t∫
t+θ

xT(s)Q5x(s) dsdθ, V5(xt, t) =

0∫
−h

t∫
t+θ

ẋT(s)Q6ẋ(s) dsdθ,

V6(xt, t) =

0∫
−h

0∫
ν

t∫
t+θ

xT(s)Q7x(s)ds dθ dν, V7(xt, t) =

0∫
−h

0∫
ν

t∫
t+θ

ẋT(s)Q8ẋ(s) dsdθ dν,

V8(xt, t) =

0∫
−h

0∫
%

0∫
ν

t∫
t+θ

ẋT(s)Q9ẋ(s)dsdθ dν d%,

V9(xt, t) =

0∫
−h

0∫
ω

0∫
%

0∫
ν

t∫
t+θ

ẋT(s)Q10ẋ(s)ds dθ dν d% dω.

Then we calculating the time derivative of V (x(t)):

V̇1(xt, t) = 2xT(t)Piẋ(t) = ξT(t)Υ1ξ(t), (8)

V̇2(xt, t) = xT(t)Q1x(t)− xT(t− h)Q1x(t− h)

+ xT(t)Q2x(t)− (1− µ)xT(t− h(t))Q2x
(
t− h(t)

)
,

= ξT(t)Υ2ξ(t), (9)

V̇3(xt, t) = ẋT(t)Q3ẋ(t)− ẋT(t− d)Q3ẋ(t− d)

+ fT
(
x(t)

)
Q4f

(
x(t)

)
− fT

(
x
(
t− h(t)

))
Q4f

(
x
(
t− h(t)

))
,

= ξT(t)Υ3ξ(t), (10)
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V̇4(xt, t) = hxT(t)Q5x(t)−
t∫

t−h

xT(s)Q5x(s) ds, (11)

Using Lemma 2 in (11), we can get

V̇4(xt, t) 6 ξT(t)Υ4ξ(t), (12)

V̇5(xt, t) = hẋT(t)Q6ẋ(t)−
t∫

t−h

ẋT(s)Q6ẋ(s) ds, (13)

and applying Lemma 1 in V̇5(x(t)), we get

V̇5(xt, t) 6 ξT(t)Υ5ξ(t), (14)

V̇6(xt, t) =
h2

2
xT(t)Q7x(t)−

0∫
−h

t∫
t+θ

xT(s)Q7x(s) dsdθ. (15)

By applying Lemma 3 we get

V̇6(xt, t) 6 ξT(t)Υ6ξ(t), (16)

V̇7(xt, t) =
h2

2
ẋT(t)Q8ẋ(t)−

0∫
−h

t∫
t+θ

ẋT(s)Q8ẋ(s) dsdθ. (17)

By Lemma 3 we obtain

V̇7(xt, t) 6 ξT(t)Υ7ξ(t), (18)

V̇8(xt, t) =
h3

6
ẋT(t)Q9ẋ(t)−

0∫
−h

0∫
ν

t∫
t+θ

ẋT(s)Q9ẋ(s) dsdθ dν. (19)

Also, by using the Lemma 3 we can get

V̇8(xt, t) 6 ξT(t)Υ8ξ(t), (20)

V̇9(xt, t) =
h4

24
ẋT(t)Q10ẋ(t)−

0∫
−h

0∫
%

0∫
ν

t∫
t+θ

ẋT(s)Q10ẋ(s) dsdθ. (21)

By Lemma 3 we get

V̇9(xt, t) 6 ξT(t)Υ9ξ(t). (22)
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Furthermore, the following equality holds for any real matrices N1 and N2 with compat-
ible dimensions:

0 = 2
[
xT(t) + ẋT(t)

]
(N1 +N2)

[
−Ax(t) + Bf

(
x(t)

)
+ Cf

(
x
(
t− h(t)

))
+ Dẋ(t− d) + Ew(t)− ẋ(t)

]
, (23)

0 = 2
[
eT1 (t) + eT6 (t)

]
(N1 +N2)

[
−Ae1 + Be4 + Ce5 + De7 + Ee14 − e6

]
, (24)

0 = ξT(t)Υ10ξ(t). (25)

Based on Assumption 2, for i = 1, 2, . . . , n, we obtain[
fi
(
xi(t)

)
− %−i xi(t)

][
fi
(
xi(t)

)
− %+i xi(t)

]
6 0,[

fi
(
xi
(
t− τ(t)

))
− %−i xi

(
t− τ(t)

)][
fi
(
xi
(
t− τ(t)

))
− %+i xi

(
t− τ(t)

)]
6 0,

which is equivalent to[
xi(t)

fi(xi(t))

]T [
%−i %

+
i mim

T
i −%

−
i %

+
i

2 mim
T
i

∗ mim
T
i

] [
xi(t)

fi(xi(t))

]
6 0, i = 1, 2, . . . , n,

where mi denotes the unit column vector having 1 on its ith row and zeros elsewhere. Let
U = diag{u1, u2, . . . , un}, S = diag{s1, s2, . . . , sn}.

n∑
i=1

ui

[
xi(t)

fi(xi(t))

]T [
%−i %

+
i mim

T
i −%

−
i %

+
i

2 mim
T
i

∗ mim
T
i

] [
xi(t)

fi(xi(t))

]
6 0

can be written as [
x(t)

f
(
x(t)

)]T [∆1U −∆2U
∗ U

] [
x(t)

f
(
x(t)

)] 6 0.

Similarly, we get[
x(t− h(t))

f(x(t− h(t)))

]T [
∆1S −∆2S
∗ S

] [
x(t− h(t))

f(x(t− h(t)))

]
6 0,

which implies that
ξT(t)Υ11ξ(t) 6 0. (26)

Define the following function:

J1 = V̇ (t)− αV (t)− αwT(t)w(t). (27)

Combining (8)–(27) results
J1 6 ξT(t)Θ̂ξ(t) < 0.
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Then α > 0, so the inequality J1 > 0 holds, and we can get

V̇ (t) < αV (t) + αwT(t)w(t).

Multiplication by e−αt of both sides yields

e−αtV
(
x(t)

)
< αe−αtwT(t)w(t). (28)

Integrating two sides of inequality (28) from 0 to t, t ∈ [0, T ], we have

e−αt
[
V
(
x(t)

)
− V

(
x(0)

)]
< α

t∫
0

e−αswT(s)w(s) ds,

which implies that

V
(
x(t)

)
< eαtV

(
x(0)

)
+ αeαt

t∫
0

e−αswT(s)w(s) ds.

< eαtV
(
x(0)

)
+ δeαT

(
1− eαT

)
. (29)

On the other hand, we define

P̄ = R−1/2PR−1/2, Q̄i = R−1/2QiR
−1/2, i = 1, 2, . . . 10.

From (29) and by the same method used in [27] it follows that

V
(
x(t)

)
6 eαT

(
λ2 + hλ3 + hλ4 + dλ5 + hλ6 +

h2

2
λ7 +

h2

2
λ8

+
h3

6
λ9 +

h3

6
λ10 +

h4

24
λ11 +

h5

120
λ12

)
c1 + δeαT

(
1− eαT

)
,

6 eαT
[
Λc1 + δ

(
1− eαT

)]
, (30)

where

Λ = λ2 + hλ3 + hλ4 + dλ5 + hλ6

+
h2

2
λ7 +

h2

2
λ8 +

h3

6
λ9 +

h3

6
λ10 +

h4

24
λ11 +

h5

120
λ12.

On the other hand,

V
(
x(t)

)
> λmin(P̄ )xT(t)Rx(t) = λ1x

T(t)Rx(t). (31)

Combining (30) and (31), we obtain

xT(t)Rx(t) 6
eαT [Λc1 + δ(1− eαT )]

λ1
.

Condition (7) implies that for all t ∈ [0, T ], xT(t)Rx(t) < c2. This completes the proof.
Hence, by the Definition 1 the considered system (4)–(5) is finite-time bounded.
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3.2 Finite-time stability analysis

Remark 1. If the external disturbance w(t) = 0, system (4)–(5) becomes

ẋ(t) = −Ax(t) + Bf
(
x(t)

)
+ Cf

(
x
(
t− h(t)

))
+ Dẋ(t− d), (32)

x(θ) = φ(θ), θ ∈ [−Hd, 0]. (33)

We define

ξT(t) = col

[
xT(t), xT

(
t− h(t)

)
, xT(t− h), fT

(
x(t)

)
, fT

(
x
(
t− h(t)

))
, ẋ(t),

ẋ(t− d),

t∫
t−h(t)

xT(s) ds,

t−h(t)∫
t−h

xT(s) ds,

0∫
−h(t)

t∫
t+θ

xT(s) dsdθ,

−h(t)∫
−h

t∫
t+θ

xT(s) dsdθ,

0∫
−h(t)

0∫
ν

t∫
t+θ

xT(s) dsdθ dν,

−h(t)∫
−h

0∫
ν

t∫
t+θ

ẋT(s) dsdθ dν

]
,

ek = col
[
0(k−1)n×n, In, 0(k−1)n×n

]
, k = (1, 2, . . . 13).

Corollary 1. For given scalars h, µ, α, c1, c2 and T , the neural networks (32)–(33) is
finite-time stable if there exist positive symmetric matrices P , Qi (i = 1, 2, . . . , 10), any
diagonal matrices U , S and matrices N1, N2 with appropriate dimensions such that the
following LMIs holds:

Υm − e1αPeT1 < 0,

where

Υm = Υb1 + Υ2 + Υ3 + Υ4 + Υ5 + Υ6 + Υ7 + Υ8 + Υ9 + Υb10 + Υ11,

λ1c2e−αT > Λc1,

where
Υb1 = −2e1PAe

T
1 + 2e1PBe

T
4 + 2e1PCe

T
5 + 2e1PDe

T
7 ,

Υb10 = 2[e1 + e6](N1 +N2)
[
−AeT1 + BeT4 + CeT5 + DeT7 − e6

]
with Υ2, . . . Υ9, Υ11 as described in Theorem 1.

Proof. The proof is similar to that of Theorem 1, so it is omitted here.
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3.3 Finite-time passivity analysis

In this section, we investigate the finite-time passivity analysis for the following delayed
neutral-type neural networks:

ẋ(t)−Dẋ(t− d) = −Ax(t) + Bf
(
x(t)

)
+ Cf

(
x
(
t− h

(
t)
))

+ Ew(t),

y(t) = Gf
(
x(t)

)
+ Hw(t), (34)

x(θ) = φ(θ), θ ∈ [−Hd, 0]. (35)

Theorem 2. For given scalars h, µ, δ, h, α, β, c1, c2 and T , the neural networks (34)–(35)
is finite-time passive if there exist positive symmetric matrices P , Qi (i = 1, 2, . . . , 10),
any diagonal matrices U , S and matrices N1, N2 with appropriate dimensions such that
the following LMIs holds:

Φ = Υκ − e1αPeT1 − e4GTe14 − e14
(
βI −HT −H

)
eT14 < 0, (36)

where Υκ = Υ1 + Υ2 + · · ·+ Υ11,

λ1c2e−αT > Λc1 + δ
(
1− eαT

)
(37)

with Υ1, Υ2, . . . , Υ11 as described in Theorem 1 with respect to (c1, c2, R, δ, T ).

Proof. By using LKF and the similar lines as that in the proof of Theorem 1,

J2 = V̇
(
x(t)

)
−
[
αV
(
x(t)

)
− βwT(t)w(t) + 2wT(t)y(t)

]
.

Since J2 < 0,

V̇
(
x(t)

)
−
[
αV
(
x(t)

)
− βwT(t)w(t) + 2wT(t)y(t)

]
< 0,

we can obtain
ξT(t)Φξ(t) < 0.

Hence,
V̇
(
x(t)

)
− αV

(
x(t)

)
< 2wT(t)y(t)− βwT(t)w(t).

Multiplying the above inequality by e−αT and integrating between 0 and T , we have

eαTV
(
x(t)

)
< 2

T∫
0

e−αtwT(t)y(t) dt− β
T∫

0

e−αtwT(t)w(t) dt

< 2

T∫
0

e−αtwT(t)y(t) dt− βe−αT
T∫

0

wT(t)w(t) dt,

which implies that

V
(
x(t)

)
< 2eαT

T∫
0

e−αtwT(t)y(t) dt− β
T∫

0

wT(t)w(t) dt.
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Therefore,

γ

T∫
0

wT(t)w(t) dt <

T∫
0

wT(t)y(t) dt.

where γ = βe−αT /2. This completes the proof. By Definition 3 the considered sys-
tem (34)–(35) is finite-time passive.

Definition 4. System (34)–(35) is called passive if there exists a scalar γ > 0 such that

γ

T∫
0

wT(s)w(s) ds 6 2

T∫
0

yT(s)w(s) ds

for all solution of (34)–(35) with x(0) = 0.

Remark 2. By Definition 4 we can obtain a passivity criterion of network (34)–(35) by
the similar method of the proof of Theorem 2. The following LMI holds:

Φ1 = Υκ − e4GTe14 − e14
(
βI −HT −H

)
eT14 < 0,

where Υκ = Υ1 + Υ2 + · · ·+ Υ11 with Υ1, Υ2, . . . , Υ11 described in Theorem 1.

Remark 3. From (1) we write the following neural networks without neutral delay, output
vector and external disturbance (i.e., D = 0, y(t) = 0 and w(t) = 0):

ẋ(t) = −Ax(t) + Bf
(
x(t)

)
+ Cf

(
x
(
t− h(t)

))
. (38)

Corollary 2. For given scalars h, µ the neural networks (38) is asymptotically stable if
there exist positive symmetric matrices P , Qi (i = 1, 2, 4 . . . , 10), any diagonal matrices
U , S and matrices N1, N2 with appropriate dimensions such that the following LMIs
holds:

Υn < 0,

where

Υn = Υε1 + Υ2 + Υε3 + Υ4 + Υ5 + Υ6 + Υ7 + Υ8 + Υ9 + Υε10 + Υ11,

Υε1 = −2e1PAe
T
1 + 2e1PBe

T
4 + 2e1PCe

T
5 , Υε3 = e4Q4e

T
4 − e5Q4e

T
5 ,

Υε10 = 2[e1 + e6](N1 +N2)
[
−AeT1 + BeT4 + CeT5 − e6

]
,

Proof. Consider the same Lyapunov–Krasovskii functional from Theorem 1, except∫ t
t−d ẋ

T(s)Q3ẋ(s) ds. The proof is similar to that of in Theorem 1.

4 Numerical examples

In this section, five examples are presented to illustrate the main theoretical results pro-
posed. In the first example, we consider neutral-neural networks without output vectors.
The delayed neutral-type neural networks with output vectors is provided in the second
example. In the third to five examples, comparison results are given.
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Example 1. Consider the neutral-type neural networks described in (4)–(5) with the fol-
lowing matrix parameters:

A =

[
3.6 0
0 3.6

]
, B =

[
−0.34 0
−0.1 −0.1

]
, C =

[
0.1 0.2
−0.15 −0.18

]
,

D =

[
−0.5 0
0.2 0.5

]
, E =

[
0.41 0.5
0.69 −0.31

]
.

The values of delays c1, T , δ are given as follows:

h = 1.3, d = 0.2, c1 = 0.4, T = 6,

α = 0.10, δ = 0.005, µ = 0.5, δ = 0.10,

and ∆1 = diag{0, 0}, ∆2 = diag{1, 1}. Solving LMIs (6)–(7) by the toolbox of MAT-
LAB, we can obtain c2 = 26.8320, and hence, the considered neutral system is finite-time
bounded.

Example 2. Consider the neutral-type neural networks (34)–(35) with the following ma-
trix parameters:

A =

[
1.5 0
0 1.5

]
, B =

[
1.1 0.2
−0.1 −1.1

]
, C =

[
0.2 0
0.2 −0.2

]
,

D =

[
−0.5 0.3
0.2 0.1

]
, E =

[
0.4 −0.2
0.3 −0.14

]
, G =

[
0.1 0.2
−0.01 0.4

]
,

H =

[
0.2 −0.6
0.3 0.2

]
,

Let

h = 2.4, d = 1.2, c1 = 0.5, c2 = 6, T = 5,

α = 0.10, δ = 1, µ = 0.9, β = 0.2,

and ∆1 = diag{0, 0}, ∆2 = diag{0.5, 0.9}. Solving LMI (36)–(37), we can obtain
γ = 0.0779. Thus system (34)–(35) is finite-time passive.

Example 3. Consider the neural networks (34)–(35) with the following parameters:

A =

[
2.2 0
0 1.8

]
, B =

[
1.2 1
−0.2 0.3

]
, C =

[
0.8 0.4
−0.2 0.1

]
,

G =

[
1 0
0 1

]
, ∆1 =

[
0 0
0 0

]
, ∆2 =

[
1 0
0 1

]
,

D = E = H = 0,

and f(x) = (|x + 1| − |x − 1|)/2. In Table 1, the results of the upper bounds of time
delay for guaranteeing passivity are compared with the previous results. The maximum
allowable upper bounds of neural networks (34)–(35) when 0 6 h(t) 6 42.2438 and
µ 6 0.5 are given in Table 1.
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Table 1. Maximum allowable bound h for different values µ in Example 3. (m is
delay partitioning number.)

µ 0.5 0.7 0.9 Unknown
[34] 0.7230 0.6814 0.6791 0.6791
[36] 1.3752 1.3036 1.3027 1.3027
[13] (m = 3) 35.3121 9.0128 4.7568 4.7368
Remark 2 42.2438 14.9210 7.0010 5.9908

Example 4. Consider the neural networks with time-varying delays (38) with matrix pa-
rameters taken from [8–10,12,22,25,29,30,37]. In Table 2, the maximum allowable upper
bounds of the time varying-delays h for different values µ are given. Also, we obtained
less conservative results than the results in [8–10, 12, 22, 25, 29, 30, 37]. The response of
the state trajectories for the delayed neural networks (38), which is asymptotically stable,
is shown in Fig. 1.

Table 2. Maximum allowable bounds of h for different values µ in Example 4.

µ [10] [8] [9] [37] [12] [25] [29] [30] [22] Corollary 2
0.1 3.27 3.27 3.30 3.35 3.75 3.70 3.91 3.91 3.97 6.46
0.5 2.15 2.22 2.53 2.59 2.73 3.12 2.79 2.80 2.86 5.21
0.9 1.31 1.58 2.08 2.13 2.27 2.59 2.33 2.55 2.63 5.01

0 10 20 30 40 50
−2

−1.5

−1

−0.5

0

0.5

1

t/sec

x
(t

)

 

 

x1

x2

x3

x4

Figure 1. State trajectories of the system (38) with time varying delay µ = 0.5 in Example 4.

Example 5. Consider the delayed neural networks (38) with following parameters:

A =

[
1.5 0
0 1.7

]
, B =

[
0.0503 0.0454
0.0987 0.2075

]
, C=

[
0.2381 0.9320
0.0388 0.5062

]
,

∆1 =

[
0 0
0 0

]
, ∆2 =

[
0.3 0
0 0.8

]
.
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Table 3. Maximum allowable bounds of h for different values µ in Example 5.

Method 0.4 0.45 0.50 0.55 0.60 0.65

[24] 3.9972 3.2760 3.0594 2.9814 − −
[25] 4.3814 3.6008 3.3377 3.2350 − −
[31] 5.2420 4.4301 4.1055 3.9231 − −
[22] 5.3165 4.5312 4.2581 4.0569 − −
Corollary 2 6.4380 5.9025 5.2100 5.0301 4.8908 4.5268

0 5 10 15 20 25 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t/sec

x
(t

)

 

 
x1
x2

Figure 2. State trajectories of the system (38) with time varying delay µ = 0.50 in Example 5.

In Table 3, for different values of µ we get the maximum allowable upper bounds of h.
The results are compared with the results in [22, 24, 25, 31]. The response of the state
trajectories for the delayed neural networks (38), which is asymptotically stable, is shown
in Fig. 2.

5 Conclusion

In this article, we investigated the finite-time passivity of neutral-type neural networks
with time-varying delays. By applying the Jensen-type integral inequality technique a de-
lay-dependent criterion is developed to achieve the finite-time boundedness and finite-
time stability for the neutral-type neural networks. Based on our proposed multiple in-
tegral forms of the Wirtinger-based integral inequality and the auxiliary function-based
integral inequalities approach for high-order case, a novel delay-dependent condition
is established to achieve the finite-time passivity neural networks. Numerical examples
shows the effectiveness of the theoretical results and superiority to the existing results.
Thus, the proposed technique can be extendable to spatial finite-time stabilization or syn-
chronization: finite/fixed-time pinning synchronization of complex networks with stochas-
tic disturbances [17]; discontinuous observers design for finite-time consensus of multi-
agent systems with external disturbances [16]; nonsmooth finite-time synchronization of
switched coupled neural networks [15]. This will occur in the near future.
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