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Abstract. This article explores how machine learning can be applied in efficient-
ly solving a variation of the Travelling Salesman Problem (TSP) in the context of 
air travel tourism. Large number of cities create too many trip route combina-
tions to be efficiently evaluated in real time. The method proposed uses a feed-
forward neural network to narrow down the number of trip route combinations, 
while a more traditional algorithm based on dynamic programming is then able 
to select the best trip offers. It was shown that the method could be applied in 
practice to achieve almost real-time generation of best possible trip offers while 
evaluating a large amount of real-world flight data.  

Keywords: travelling salesman problem, flight search, combinatorial optimi-
zation, neural network.

1 Introduction

Consider a tourist who wants to visit several different cities in a specific date 
range in a round trip from his home city. The tourist might also have prefer-
ences to which cities one wants to visit or avoid. A list of N best possible trip 
offers then should be provided to the user, based on the real-world flight 
data. The quality of the trip is determined by its price, but additional metrics 
could be added.

Since flight data updates very often and the number of possible date 
ranges is immensely huge it is not practical to pre-calculate all the offers. On 
the other hand, finding the best offers in real-time is inefficient due to the 
need to compute the best scored combination of flights for a large amount 
of possible trip routes.

In the combinatorial optimization domain, the more simplified version 
of this problem is well known as the Travelling Salesman Problem (TSP) [1]. 
More recent works on the topic also include machine learning approaches 
such as one by Chaitanya K. et al. [2]  which makes use of neural networks to 
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perform TSP efficiently with hundreds of nodes. For our problem, however, 
the number of nodes (possible trip flights) will never be more than a few 
hundred, but the more important issue is the number of trip routes growing 
exponentially because of the number of different cities.

This article proposes a heuristic solution that allows to efficiently find 
the best trip offers using a feedforward neural network combined with a 
tree search algorithm based on dynamic programming (hereinafter DP). 
The feedforward neural network (hereinafter FNN) model can narrow down 
the total number of possible trip route combinations to a smaller amount 
of potential best trip candidates, while the algorithm based on dynamic pro-
gramming is then able to select the N best trips. 3 scenarios with different 
constraints on the trip offer are tested.

2 Method

Each trip contains a set of cities T, |T| = N, with a particular order. A trip starts 
at the start city t1 and the last city visited is denoted as tn.  Every trip is a round 
trip and ends at the start city t1. The ordered set T is referred to as a trajectory. 

The trajectories used in our experiment are made up from 100 selected Eu-
ropean cities. City selections are based on OpenStreetMap Place Importance 
Score (OSM PIS). Each city has a set of airports assigned to it, which is used to 
associate flight data with the city. The cities used are marked in Figure 1.

Figure 1. Selected cities

96 trajectories, it would be impractical to consider all the possible combinations. Trajectory 
amount can be reduced by selecting only the most attractive trajectories – ones with the best 
trajectory round score and combined OSM PIS. Round score is calculated by dividing the total 
trajectory distance by the minimal possible distance connecting all the cities. Since only 5 cities 
make the trajectory, calculating the round score is trivial. 210000 trajectories were generated 
for our experiment. An example of a trajectory with its adjacent cities connected by a blue line is 
presented in Figure 2. 
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The score of the trip equals to the sum of its flight ticket prices. The lower the score, the 
better the trip is considered.  

Our method to find the best N trips given M possible trajectories and flight data is as 
follows: 

1. Pass the flight prices of M trajectories of the given date range to the FNN model. Each 
day can have at most a single flight for a given route between two cities. 

2. Pass some amount of best predicted trajectories and their flight prices to the DP 
algorithm. 

3. Use the best N trajectories returned by the DP algorithm and the flight data to build the 
best N trip offers. 

To determine if our method is viable in practice, we evaluate speed and accuracy metrics. 
Speed is measured as the combined computing time of FNN prediction and DP algorithm. 
Accuracy is determined by comparing the final output of N best trajectories to expected N best 
trajectories and diving the sum of matching pairs by N. Accuracy is influenced by the number of 
total trajectories passed to the FNN model and the number of best model predictions passed to 
the DP algorithm. 

3 trip generation scenarios are explored in this research. They differ by the constraints 
applied to what can be considered a viable trip. 

 Scenario 1: No additional constraints. 
 Scenario 2: Each city has a minimum, maximum and preferred number of days to spend 

in that city. Trip generation must respect the minimum and maximum constraints and 
apply a penalty if the time spent in a city does not match its preferred number. The 
penalty subtracts a value of 5 from the trip score per absolute day offset. 

 Scenario 3: Same as scenario 2, also, a total trip length constraint is added. The trip 
length must be in one of the three intervals: 
o 10 – 13 days 
o 14 – 20 days 
o 21 – 24 days 

The scenarios are visualized in Figure 3, where the X axis represents the flights, and the Y 
axis represents the days. The red cells mark the days in which it is impossible to take the flight to 
match the given constraints. The green cells represent the possible days to take flights if trip is 
starting from the earliest day (03-28). Yellow cells represent other possible days if trip were to 
start from another day. With each scenario, the amount of possible flight combinations is 
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 Each of the trajectories consist of 5 cities. Trajectories are generated based 
on the real-world flight routes which seldom change. Since there could be a 
total of 100 · 99 · 98 · 97 · 96 trajectories, it would be impractical to consider 
all the possible combinations. Trajectory amount can be reduced by select-
ing only the most attractive trajectories – ones with the best trajectory round 
score and combined OSM PIS. Round score is calculated by dividing the total 
trajectory distance by the minimal possible distance connecting all the cities. 
Since only 5 cities make the trajectory, calculating the round score is trivial. 
210000 trajectories were generated for our experiment. An example of a tra-
jectory with its adjacent cities connected by a blue line is presented in Figure 2.
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trajectory distance by the minimal possible distance connecting all the cities. Since only 5 cities 
make the trajectory, calculating the round score is trivial. 210000 trajectories were generated 
for our experiment. An example of a trajectory with its adjacent cities connected by a blue line is 
presented in Figure 2. 
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Figure 2. Trajectory graph example

The score of the trip equals to the sum of its flight ticket prices. The 
lower the score, the better the trip is considered. 

Our method to find the best N trips given M possible trajectories and 
flight data is as follows:

1. Pass the flight prices of M trajectories of the given date range to the 
FNN model. Each day can have at most a single flight for a given route 
between two cities.

2. Pass some amount of best predicted trajectories and their flight pric-
es to the DP algorithm.

3. Use the best N trajectories returned by the DP algorithm and the 
flight data to build the best N trip offers.

To determine if our method is viable in practice, we evaluate speed and 
accuracy metrics. Speed is measured as the combined computing time of 
FNN prediction and DP algorithm. Accuracy is determined by comparing the Figure 1. Selected cities
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final output of N best trajectories to expected N best trajectories and diving 
the sum of matching pairs by N. Accuracy is influenced by the number of 
total trajectories passed to the FNN model and the number of best model 
predictions passed to the DP algorithm.

3 trip generation scenarios are explored in this research. They differ by 
the constraints applied to what can be considered a viable trip.

• Scenario 1: No additional constraints.
• Scenario 2: Each city has a minimum, maximum and preferred num-

ber of days to spend in that city. Trip generation must respect the 
minimum and maximum constraints and apply a penalty if the time 
spent in a city does not match its preferred number. The penalty sub-
tracts a value of 5 from the trip score per absolute day offset.

• Scenario 3: Same as scenario 2, also, a total trip length constraint is 
added. The trip length must be in one of the three intervals:
o 10 – 13 days
o 14 – 20 days
o 21 – 24 days

Figure 3. Testing scenarios

reduced. In the Figure 3 example, the min. and max. number of days to stay in every city are 3 
and 7 respectively and the total trip length should span from 14 to 20 days. In our experiment, 
for all scenarios we constrain the maximum trip length to 24 days. 
 

 
Figure 3. Testing scenarios 

3 Experiment 
The computing environment used for this research has the following parameters: 

 RAM memory: 32 GB 
 CPU: AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz (1 CPU core used) 
 OS: Windows 10 64-bit architecture 
Python 3.9 programming language is used to program the software. PyTorch machine 

learning framework is used to create the neural network model. 
Common neural network training hyperparameters for each scenario are as follows: 
 Batch size: 128 
 Optimizer: Adam [3] 
 Loss function: Mean absolute error (MAE) 
 Learning rate: Reducing learning rate on plateau by a factor of 0.5 on 3 consecutive 

epochs without improvement. 
 Epochs: Until does not improve for 10 epochs or until 60. 
The departure dates for all the flight data in the experiment span between 2021-03-28 and 

2021-05-15. Flight data from 2021-03-28 to 2021-04-20 is used for training, while data from 
2021-04-21 to 2021-05-15 is used for validation. For scenario 1, flight prices of 24 days for each 
of the 5 trajectory cities are passed to the model as an input, for a total input length of 120. If the 
flight data for a particular day is missing, it is passed to the model as a value of -1. For scenario 2, 
the number of min., max. and preferred days for each city is added to the input, which increases 
the input length to 135. For scenario 3, numbers for min. and max. trip length are added, for an 
input length of 137. The target trip scores for the model training were built using the DP 
algorithm. If not a single trip can be built for a trajectory under certain constraints, the target is 
set to a value of 1000. The model outputs a single value – a trip score. 210000 inputs were used 
to train model for scenarios 1 and 2, while scenario 3 trained with three times number of inputs 
(630000) due to three distinct intervals used for total trip length. 

Neural network validation accuracy during training for each scenario is presented in figures 
Figure 4, Figure 5 and Figure 6. The used notation to describe the model architectures in the 
figure legends is as follows: � � � � � � �, where I is the number of inputs for the input layer, H 
is the number of inputs for each hidden layer, N is the number of hidden layers and O is the 

The scenarios are visualized in Figure 3. Testing scenarios, where the 
X axis represents the flights, and the Y axis represents the days. The red 
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cells mark the days in which it is impossible to take the flight to match the 
given constraints. The green cells represent the possible days to take flights 
if trip is starting from the earliest day (03-28). Yellow cells represent other 
possible days if trip were to start from another day. With each scenario, the 
amount of possible flight combinations is reduced. In the Figure 3. Testing 
scenarios  example, the min. and max. number of days to stay in every city 
are 3 and 7 respectively and the total trip length should span from 14 to 20 
days. In our experiment, for all scenarios we constrain the maximum trip 
length to 24 days.

3 Experiment

The computing environment used for this research has the following pa-
rameters:

• RAM memory: 32 GB
• CPU: AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz (1 CPU core 

used)
• OS: Windows 10 64-bit architecture

Python 3.9 programming language is used to program the software. Py-
Torch machine learning framework is used to create the neural network 
model.

Common neural network training hyperparameters for each scenario 
are as follows:

• Batch size: 128
• Optimizer: Adam [3] 
• Loss function: Mean absolute error (MAE)
• Learning rate: Reducing learning rate on plateau by a factor of 0.5 on 

3 consecutive epochs without improvement.
• Epochs: Until does not improve for 10 epochs or until 60.

The departure dates for all the flight data in the experiment span be-
tween 2021-03-28 and 2021-05-15. Flight data from 2021-03-28 to 2021-04-
20 is used for training, while data from 2021-04-21 to 2021-05-15 is used for 
validation. For scenario 1, flight prices of 24 days for each of the 5 trajectory 
cities are passed to the model as an input, for a total input length of 120. 
If the flight data for a particular day is missing, it is passed to the model as 
a value of -1. For scenario 2, the number of min., max. and preferred days 
for each city is added to the input, which increases the input length to 135. 
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For scenario 3, numbers for min. and max. trip length are added, for an 
input length of 137. The target trip scores for the model training were built 
using the DP algorithm. If not a single trip can be built for a trajectory under 
certain constraints, the target is set to a value of 1000. The model outputs a 
single value – a trip score. 210000 inputs were used to train model for sce-
narios 1 and 2, while scenario 3 trained with three times number of inputs 
(630000) due to three distinct intervals used for total trip length.

Neural network validation accuracy during training for each scenario is 
presented in figures Figure 4 , Figure 5  and Figure 6. The used notation to de-
scribe the model architectures in the figure legends is as follows: I x H * N x O, 
where I is the number of inputs for the input layer, H is the number of inputs 
for each hidden layer, N is the number of hidden layers and O is the number 
of outputs (1 output describing the trip score). The best model architecture is 
highlighted with a yellow marker. In general, to obtain the optimal validation 
accuracy, the models had to become more complex as the trip constraints 
increased. Model for scenario 2 tends to overfit the most and the model state 
after 4th epoch is used for its metric check. Techniques such as dropout [4]  
and dataset scaling were tested but failed to improve the model accuracy.

number of outputs (1 output describing the trip score). The best model architecture is 
highlighted with a yellow marker. In general, to obtain the optimal validation accuracy, the 
models had to become more complex as the trip constraints increased. Model for scenario 2 
tends to overfit the most and the model state after 4th epoch is used for its metric check. 
Techniques such as dropout [4] and dataset scaling were tested but failed to improve the model 
accuracy. 

 

Figure 4. Scenario 1 validation accuracy 

 
Figure 5. Scenario 2 model validation accuracy 

 
Figure 6. Scenario 3 model validation accuracy 
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Figure 4. Scenario 1 validation accuracy
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number of outputs (1 output describing the trip score). The best model architecture is 
highlighted with a yellow marker. In general, to obtain the optimal validation accuracy, the 
models had to become more complex as the trip constraints increased. Model for scenario 2 
tends to overfit the most and the model state after 4th epoch is used for its metric check. 
Techniques such as dropout [4] and dataset scaling were tested but failed to improve the model 
accuracy. 
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Figure 6. Scenario 3 model validation accuracy

The dynamic programming algorithm is used to find the actual best pos-
sible flight combination for a given trajectory. It works like a brute force tree 
search algorithm, but with optimizations. Instead of checking each possible 
flight combination, it stops traversing the flights if the flight for a given day 
was already traversed and had a better total flight price. It also only iterates 
through the dates which match the constraints of the min. and max. days to 
stay in a certain flight city and ignores days which do not match the total trip 
length constraint (such days are marked red in Figure 3).

4 Results

The final accuracy and speed results are presented in tables Table 1  and 
Table 2. Accuracy match results were averaged over 50 test runs. In the accu-
racy result table, cells marked in red, yellow, and green represent respectively 
the worst, the second best and the best scenario for the testing parameters 
of the rightmost 3 columns. Columns “Total predictions made”, “Top N predic-
tions to search in” and “Required top N matches” denote respectively how many 
inputs were passed to the FNN model, how many of the best results then 
were passed to the DP algorithm, and how many final trip offers do we want 
to output. The cell values in bold mark the values for which at least 80% of the 
required top N matches do match, which is considered a good result.

It is possible to infer from the accuracy results that the more constrained 
the trip generation scenario is, the more accurate the final matches tend to 
be. Since the mean absolute error of the FNN model validation accuracy was 
lower for the more constrained models, this might not seem reasonable. 
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Table 1. Accuracy results

Actual matches Required top  
N matches

Top N 
predictions to 

search in

Total 
predictions 

made1 Scen. 2 Scen. 3 Scen.

5,48 6,72 8,72 10 50 2000
10,86 12,20 16,22 20 50 2000
23,04 23,84 31,78 50 50 2000

6,76 8,26 9,50 10 100 2000
13,92 15,38 18,42 20 100 2000
32,42 34,18 41,74 50 100 2000

8,96 9,82 9,82 10 250 2000
18,16 19,26 19,46 20 250 2000
43,62 44,76 47,58 50 250 2000

9,84 9,98 9,84 10 500 2000
19,70 19,94 19,56 20 500 2000
48,58 48,90 48,82 50 500 2000

3,60 3,92 6,08 10 50 10000
6,26 6,50 11,00 20 50 10000

11,32 12,32 21,28 50 50 10000
5,16 6,32 8,12 10 100 10000
9,22 11,06 15,34 20 100 10000

19,56 22,62 32,82 50 100 10000
7,00 8,02 9,32 10 250 10000

13,14 14,92 18,40 20 250 10000
29,28 34,88 43,92 50 250 10000

8,12 9,24 9,76 10 500 10000
15,46 17,44 19,44 20 500 10000
35,74 41,90 48,04 50 500 10000

3,48 1,24 3,92 10 50 50000
4,46 2,06 6,74 20 50 50000
5,80 4,24 12,12 50 50 50000
4,86 2,24 5,50 10 100 50000
6,70 3,44 9,94 20 100 50000

10,14 7,80 19,50 50 100 50000
6,60 6,12 8,34 10 250 50000

10,04 10,98 15,10 20 250 50000
17,10 21,58 31,74 50 250 50000

7,98 8,44 9,44 10 500 50000
12,70 15,54 17,50 20 500 50000
24,18 33,50 40,68 50 500 50000
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However, it may be explained by the greater value of the standard deviation 
of more constrained scenario model target array (trip scores) compared to 
less constrained scenario targets. The final matches tend to be less accurate 
the more trajectory inputs are passed to the FNN model and the fewer top 
predictions are ran through the DP algorithm.

The speed results show that the performance of the FNN is extremely 
quick running faster than half of a second for 50000 trajectory inputs in 
1st and 2nd scenario and in 1.7 seconds in 3rd scenario, which uses a more 
complex neural network architecture. The DP algorithm time decreases as 
the amount of trip constraints increases.

5 Conclusions

In this article it was investigated if combining the speed of feedforward neu-
ral networks and the accuracy of traditional search algorithms can be used 
to quickly generate attractive trip offers using real world flight data. The 
results show that for cities which contain as much as 50000 trajectories, it is 
possible to generate as much as 50 trip offers in which at least 80% of them 
match the best possible offers in under 2 seconds under the constraints of 
this experiment. This shows that the method can be applied in practice, and 
it will be strongly considered to be integrated into a newly developing trip 
planning software system.

Table 2. Speed results

Trajec-
tories

Scenario 1 Scenario 2 Scenario 3

FNN time DP time FNN time DP time FNN time DP time

50 0:00:00:001 0:00:00:022 0:00:00:001 0:00:00:017 0:00:00:002 0:00:00:013

100 0:00:00:001 0:00:00:045 0:00:00:001 0:00:00:035 0:00:00:004 0:00:00:023

250 0:00:00:001 0:00:00:109 0:00:00:003 0:00:00:093 0:00:00:009 0:00:00:065

500 0:00:00:002 0:00:00:227 0:00:00:004 0:00:00:183 0:00:00:018 0:00:00:123

2000 0:00:00:008 0:00:00:881 0:00:00:016 0:00:00:653 0:00:00:070 0:00:00:470

10000 0:00:00:041 0:00:04:351 0:00:00:080 0:00:03:141 0:00:00:338 0:00:02:305

50000 0:00:00:191 0:00:21:987 0:00:00:423 0:00:15:972 0:00:01.706 0:00:11:449
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