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Abstract. The design effect for the restricted maximum likelihood estimators of variance components in a
completely randomized split-plot model is studied. The model was used to represent the response generated from
an experimental scenario where the whole-plot and split-plot factors are random. The work generated groups of
balanced designs from same number of experimental runs and compared them for optimality using the derived
Fisher Information matrix of the restricted maximum likelihood (REML) estimators. The measure for optimality
is the D-optimality criterion; the resulting optimal designs depend on the relative magnitudes of the true values
of the variance components. The results show that when the factor variances are larger than the error variances,
designs where the absolute difference between the number of whole-plots and the number of levels of the split-
plot factor is relatively small show substantial gain in statistical efficiency over other designs.
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1. Introduction

The importance of split-plot designs in industrial experiments has been long recognized. This is because it’s
typically infeasible to perform a complete randomization of experimental runs. Split-plot designs are used if one or
more experimental factor is hard to change and the other experimental factors are easy to change. These factors are
distinguished by the ease in which they can be changed from one experimental run to the other: Box et al (2005)
described an experiment to study the corrosion resistance of steel bars treated with four coatings at three furnace
temperatures. Furnace temperature is the hard-to-change factor because of the time it takes to reset the furnace and
reach a new equilibrium temperature. Many works in literature for designing split-plot experiments assume fixed
experimental factor effects. Bingham and Sitter (2001) use a split-plot model for experiments in the wood industry.
Goos and Vanderbroek (2001) computed D-optimal split-plot designs for an autonomously determined number and size
of whole-plot. Goos and Vandebroek (2003) later extended the work by developing an algorithm to construct D-
optimal designs for the number and size of whole-plot. Goos and Donev (2007) presented an algorithmic approach to
construct tailor made split-plot experiments without having to specify a candidate set. The results of these works cannot
be applied to situations where the levels of one or more experimental factors are random variables.

This article is devoted to obtaining an optimal design for a balanced completely randomized split-plot experiment
with random whole-plot and split-plot factors where the ANOVA sums of squares are orthogonal. The main aim is to
allocate experimental resources for a fixed number of runs. Consider an experiment to study the variation in the
intensity of radiation from a furnace at different temperatures and locations. Because of the time it would take to reset
the furnace temperature for each run, the hard to change factor or the whole-plot factor is temperature and the easy to
change factor or the split-plot factor is location. The levels of temperature and the locations were randomly chosen from
well-defined ranges and the sizes of their variances indicate variability in the intensity of radiation across locations and
temperature. In the next section we describe the split-plot model used to represent response from the experiments, the
variance structure and the steps to derive the fisher information matrix of the restricted maximum likelihood (REML)
estimators of variance components accordingly. In section 3 we describe the procedure that will enable us generate the
design space, we also present the computer algorithm written in the context of the described methodology. In section 4
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generated designs are compared for D-optimality with the aid of the written computer algorithm using selected
configurations. Conclusions are presented in section 5.

2. Split-plot model

The model equation for the split-plot design with one whole-plot factor (Factor A) and one split-plot factor (Factor
B) can be written as

Yik =M1+ +,BJ- +(aﬂ)ij + 7 + € O
j=12..b, k=12,...1.

Here
a= the number of levels of the whole-plot factor,
b = the number of levels of the split-plot factor,
I, = the number of whole-plot within each level of the whole-plot factor A,
a

R= Z i, R = total number of whole-plots,
i=1

Yijkis the response at the k™ replicate of the i"™ level of the random factor A and the jth level of the random factor B,
M is the general mean, ¢; is the effect of the i"™ level of random factor A , ﬂj is the effect of the jth level of
random factor B, (Otﬂ)ij is the random interaction effect of the i level of factor A and the jth level of factor B, y;,
is the error term of the k™ replicate of the i™ level of factor A (Whole-Plot error term), €, is the error term

corresponding to individual Yj;, (Split-Plot error term).

2.1. Matrix Formulation of the Random Effects Model

In matrix notations, the full random model can be written as

Y1y =y +Zoe+ 2y, +Zz(aﬁ)ij +Z,8,+2,a;, (2
Y is a vector of N observations, g1, is a vector of means, the Z’s are indicator matrix associated with individual
random effects and the two error terms. The Z’s are matrices of 0 and 1, Z, isa N xamatrix, Zyisa N xb matrix,
Z,isa N xabmatrix, Z, isa N x Rmatrix, Z, is an identity of order N . It is assumed that

E(a;) =0, E(B;)=0, E(aB); =0, E(y;) =0, E(e) =0,

2 2 2 2 2

cov(e;) = o, l,, cov(f,) = o1, comap); = o,,l . COM(y, ) =0, I 5, cov(e) = o, | .
The random effects are assumed to be mutually and completely uncorrelated i.e.

cov(a; B;) =0, COV(; 73, ) = 0,5 etc.
Under these assumptions, the variance covariance matrix of the observation var(y) can be written as

2 2 B 2 ’ 2 ’ 2 ’
V=o.l\+0,2,21+0,,2,Z; +0,7575 +0,2,7,, (3)

The structure of the covariance matrix depends on the design.
The inverse of V can be obtained by following the general procedure given by Searle (1979). The general form for
V given by Searle (1979) is

l . .
V= Z¢ijkl(‘];®‘]bj®‘]f®‘]rl1)’ 4)
i,jkl1=0
The inverse is
l . .
V= Zrijkl(‘];®“]bj®‘]:<®‘]:1)' )

i,j.k,1=0
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Following the procedure, (5) is obtained explicitly as

V3iI=(1,83,0J,®J )ryu+(0,®1, 83, ®J )0, +(1, 01,0, ®J )ty

6
+(1,®3,®1, ®J)75101 +H (1, 1, B, ® 1 )70000 + (I, ® I, ® I, ® I )7141, ©
where
J o . matrix of order ‘a’ with all element unity,
I, : Identity matrix of order ‘a’,
; 11 11 1 11 1 1i_1_i_i
0000 = 901 0011 = 9 9 170101 = bn 9 (9 1To111 = |6, 6, 6, o, ,
N 11 1 1 1
o= amle, 6, ™ abm|6, 6, 0, 6|
Simplifying (5) by joining similar terms and carrying out the Kronecker product results in
Vi=(,®1,®1 ®C)0 +(,0I,0C, ®J )0 +(C,®C, ®J.®J )6, o
+(J,®C, ®J,®J,)0;'+(C,®J,®J,0J,)0;, +(J,0,0J,®J )6
Where centering matrix C, =1, —J_a, J_a :l\]a.
a

6, =02,6? 92+bn0' 0, =0, +rnaaﬂ,9

0, =0, +bn02+rna +bl‘n0 0, =0, > +bno

2
o¢ +Mo, +amo,

2 2
L+ rnaaﬁ +arnaﬂ +brmo;.

2.2. Method of Estimation

In estimating variance components, the restricted maximum likelihood (REML) estimators are derived by
maximizing that part of the likelihood function which is location invariant. It is a useful property which allows the
estimation of variance components by taking into account the degrees of freedom that are involved in estimating fixed
effects. The resultants estimators are the same as the ANOVA estimators that are minimum variance unbiased
estimators. The Fisher Information (FI) matrix of the REML estimators as given by Searle et al. (1992) is

Flgey,(= 1/2{”'(PZiZ{PZjZ]")}i,j=0,1,..,4 ) (8)
where tr(PZ;Z{PZ;Z}) represents the trace of the matrix (PZ;Z{PZ;Z}). For the calculation task at hand,

tr(Pz,ziPZ;Z; ) = $S(2;PZ), ©)
where SS(Z{PZ,) is the sum of squares of the elements of the matrix (Z;PZ)),

P=V*-V _1X(X ’\/‘1X)_1X VvV~ and X =1, ®] ®1 ®1, =4,
as in (2). Upon derivation explicitly

P=6;,"(1,®C,®C, ®J )+07(,®J],®C. ®J )+
6,"(C,®C, ®J.®J )+6,*(J,®C, ®J,®J )+ (10)

6;(C, ®J,®J,®1J,),
the derivation of two of the fifteen elements of (8)
ss(zypzy) = ss[P(I, ®1, ® 1, ®1, )]

=SS 911(|a®1b®cr®1n)+041(ca®1b®ir®1n)} =bn {

(11)

(r- 1) (a 1)
0; 6?2 '

$S(Z4PZy) = ss[P(1, ®1, ®1, ®1, )]

=5s8[6,'(C, ®C, ®1, ®1,)+6;,*(J,®C, ®1, ®1, +6,(C, ®J, ®1, ®1n)}
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m (a—l)(zb—l) . (a—zl) NC —21)} W)
6 6: 6;

In this work, we seek the design that maximizes the determinant of the derived Fisher Information matrix.

3. Design Space Generation

The steps to generate candidate designs corresponding to a number of experimental runs for the random effect will
be discussed in this section.

For a fixed number of experimental runs N =arb =Rb whereR=ar , the total number of designs that can be
generated (Design Space) includes all distinct combination a, b, r satisfying the following conditions:

(i) R includes all non-prime numbers between this range 4<R< N/2 that are factors of N.

(ii) b includes all values ph= % for each R generated in (i).

(iii) 2 <a<Ri.e. ‘a’ is a multiplier of R.

Where a= the number of levels of the whole-plot factor,
b = the number of levels of the split-plot factor.
I,= the number of whole-plot within each level of the whole-plot factor A.

The number of possible designs equals the total number of ways of distributing R equally into a, i.e. the total
number of ways of distributing whole-plots into levels of the whole-plot factor in such ways that form a balanced one-
way design.

a

ar:R:Z:ri , subjectto I =T, =.....=1,.
i=1

Example.

N= 30,

R=6, 10, 15 (non-prime numbers between 4 and 15 that are factors of N).
When R=6, b=5, {a=2, r=3, b=5}, {a=3, r=2, b=5}.
When R=10, b=3, {a=2, r=5, b=3}, {a=5, r=2, b=3},
When R=15, b=2, {a=3, r=5, b=2}, {a=5, r=3, b=2}.

3.1. The Algorithm

A computer program was written in the R programming language to reflect the methodology that has been
presented. The general algorithm is presented:

Step 1: Choose the number of experimental runs e.g. N=30 (design space is generated)

Step 2: Specify the available information about each variance component

Step 3: Calculate the criterion of optimality for all candidate designs in the design space, i.e. the determinant (D-
value) for each design is shown and optimal designs depending on the criterion of optimality are identified.

The R program implementing this algorithm will be made available upon request.

4.0. Comparison and Optimality

In this section comparisons were made using selected configurations of the magnitudes of variances. In many
studies on variance components, the factor variance components are usually larger than the error variance components.
Goos (2002) recommended that whenever there is no prior information about the ratio of the error variances, then we
can set this ratio to be equal to one. The work therefore compares the design based on the configurations.

N2 2 2 2 __ 2 ey 2 2 2 2 __ 2

()o, >0, >0,, >0, =0, (o, >o,, >0, >0, =0,

HH 2 2 2 2 2 H 2 2 2 2 2

(ii)o, >0, >0, >0, =o,, (V)o,>o0,,>0, >0, =0,

2

2 2 2 _ 2 - 2 2 2 2 2
(V)O'a/;>0a>0'ﬂ>0y—0'e, (Vl)aaﬁ>c7ﬁ>o-a>0'7=ae.
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The idea is to allow each factor variance components to be the dominating variance components.

4.1. Results when the whole-plot variance is largest

Two configurations {(i) and (ii) above} and three preliminary vectors were used to compare designs when the
whole-plots variance is the largest variance. The three preliminary vectors are [2.8, 2.7, 2.5, 1, 1], [6.5, 1, 0.9. 0.8, 0.8]
and [3.8, 0.9, 3.7, 0.8, 0.8]. Tables 1, 2 and 3 show the D-optimal designs (designs that have the largest determinant of
the derived fisher information matrix), the D-worst designs (designs that have the lowest determinant of the derived
information matrix) and the D-efficiency corresponding to N=24, 30, 36 for each of the three preliminary vectors. The
D-efficiency of a given design compares the determinant of that design with the determinant of another comparable

design, where D in the terms D-optimal, D-worst, D-value and D-efficiency stands for determinant.

v
The relative D-efficiency of design 1 compared to design 2 is given as D-efficiency :(% ) .
2

Where D, is the determinant of the Fisher information matrix of design 1 and D, the determinant of the fisher

information matrix of design 2, and v is the number of parameters corresponding to the factors and interaction effect.
For the random effect model v=3. D-efficiency is used to evaluate the performance of D-optimal designs over the D-

worst designs.

Table 1: D-optimal designs and D-worst designs for different number of experimental runs using
o2 =28, 6/23 = 2.76;3 =2.5, Gf =lo’ =1

No of Experimental |Optimal Master D-value (Optimal | Worst Design | Master Design | D-value (Worst | D-efficiency
Runs (N) Designs Designs Designs) Designs) %
24 R=6,b=4 | a=3,r=2 0.05 R=12,b=2 | a=2,r=6 0.002 34.2
30 R=6,b=5 | a=3,r=2 0.16 R=15,b=2 | a=3,r=5 0.014 44.4
36 R=6,b=6 | a=3,r=2 0.41 R=18,b=2 | a=2,r=9 0.010 29.0

Table 2: D-optimal designs and D-worst designs for different number of experimental runs using
o’ =6.5, 0'; =1 oﬁﬁ =0.9, 072 =0.8,6> =08

No of Experimental |Optimal Master D-value (Optimal | Worst Design | Master Design | D-value (Worst | D-efficiency
Runs (N) Designs Designs Designs) Designs) %
24 R=6, b=4 a=3,r=2 1.06 R=12, b=2 a=2, r=6 0.07 404
30 R=6, b=5 a=3, r=2 331 R=15, b=2 a=3,r=5 0.47 52.2
36 R=6, b=6 a=3, r=2 8.06 R=18, b=2 a=2, r=9 0.20 29.2

Table 3: D-optimal designs and D-worst designs for different number of experimental runs using
o’ =38, 62 = 0.9,0'§ﬂ = 3.7,@2 =0.8,62 =08

No of Experimental |Optimal Master D-value (Optimal | Worst Design | Master Design | D-value (Worst | D-efficiency
Runs (N) Designs Designs Designs) Designs) %
24 R=8, b=3 a=4, r=2 0.084 R=12, b=2 a=2, r=6 0.002 28.8
30 R=10, b=3 | a=5, r=2 0.290 R=15, b=2 a=3,r=5 0.020 41.0
36 R=12,b=3 | a=6, r=2 0.770 R=18, b=2 a=2, r=9 0.006 19.8

4.2. Results when the split-plot variance is largest

Two configurations {(iii) and (iv) above} and three preliminary vectors were used to compare designs when the

whole- plots variance is the largest variance. The three preliminary vectors are [2.7, 2.8, 2.5, 1, 1], [1, 6.5, 0.9. 0.8, 0.8]
and [0.9, 3.8, 3.7, 0.8, 0.8]. Tables 4, 5, and 6 show the optimal designs, the designs with the worst D-values and D-
efficiency values corresponding to N=24, 30, 36 for each of the three preliminary vectors.
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Table 4: D-optimal designs and D-worst designs for different number of experimental runs using
Gi = 2.7,62 =2.8, Gjﬂ =2.5, Gf =ZI.,GE2 =1

No of Experimental | Optimal Master D-value (Optimal | Worst Design | Master Design | D-value (Worst | D-efficiency
Runs (N) Designs Designs Designs) Designs) %
24 R=6, b=4 a=3, r=2 0.058 R=12, b=2 a=2, r=6 0.002 325
30 R=6, b=5 a=3, r=2 0.160 R=15, b=2 a=3,r=5 0.014 444
36 R=6, b=6 a=3, r=2 0.410 R=18, b=2 a=2,r=9 0.006 245

Table 5: D-optimal designs and D-worst designs for different number of experimental runs using
o’ =1, G; =6.5, Gjﬂ =0.9, o-f =0.8,62 =08

No of Experimental | Optimal Master D-value (Optimal | Worst Design | Master Design | D-value (Worst | D-efficiency
Runs (N) Designs Designs Designs) Designs) %
24 R=6, b=4 a=3, r=2 0.79 R=12, b=2 a=2, r=6 0.06 42.3
30 R=6, b=5 a=3, r=2 2.63 R=15, b=2 a=3,r=5 0.33 50.1
36 R=6, b=6 a=3, r=2 6.67 R=18, b=2 a=2, r=9 0.18 30.0

Table 6: D-optimal designs and D-worst designs for different number of experimental runs using
ol = 3.7,0‘2 =3.8, oﬁﬂ =0.9, Gﬁ =0.8,62 =08

No of Experimental | Optimal Master D-value (Optimal | Worst Design | Master Design | D-value (Worst | D-efficiency
Runs (N) Designs Designs Designs) Designs) %
24 R=6,b=4 | a=3,r=2 0.32 R=12, b=2 a=2, r=6 0.02 39.7
30 R=6,b=5 | a=3, r=2 1.02 R=15, b=2 a=3, r=5 0.13 50.3
36 R=6,b=6 | a=3, r=2 251 R=18, b=2 a=2, r=9 0.07 30.3

4.3. Results when the interaction variance is largest

Two configurations {(v) and (vi) above} and three preliminary vectors were used to compare designs when the
whole-plots variance is the largest variance. The three preliminary vectors are [2.5, 2.7, 2.8, 1, 1], [0.9, 1, 6.5. 0.8, 0.8]
and [3.7, 0.9, 3.8, 0.8, 0.8]. Tables 7, 8, and 9 show the optimal designs, the designs with the worst D-values and D-
efficiency values corresponding to N=24, 30, 36 for each of the three preliminary vectors.

Table 7: D-optimal designs and D-worst designs for different number of experimental runs using
0'5 = 2.7,0‘2 =2.5, Giﬂ =2.8, 0'72 :ZI.,O'e2 =1

No of Experimental | Optimal Master D-value (Optimal | Worst Design | Master Design | D-value (Worst | D-efficiency
Runs (N) Designs Designs Designs) Designs) %
24 R=6,b=4 | a=3,r=2 0.043 R=12, b=2 a=2,r=6 0.002 36.0
30 R=6,b=5 | a=3,r=2 0.140 R=15, b=2 a=3,r=5 0.012 441
36 R=6,b=6 | a=3, r=2 0.370 R=18, b=2 a=2,r=9 0.005 238

Table 8: D-optimal designs and D-worst designs for different number of experimental runs using
o.=10,=090., =650 =080 =08

No of Experimental | Optimal Master D-value (Optimal | Worst Design | Master D-value (Worst | D-efficiency
Runs (N) Designs Designs Designs) Design Designs) %
24 R=6, b=4 a=3, r=2 0.04 R=12, b=2 a=2, r=6 0.001 29.2
30 R=6,b=5 | a=3,r=2 0.16 R=15, b=2 a=3, r=5 0.010 39.7
36 R=6, b=6 a=3, r=2 0.45 R=18, b=2 a=2, r=9 0.002 16.4

Table 9: D-optimal designs and D-worst designs for different number of experimental runs using
Gj = 3.7,0'/23 =0.9, Gjﬁ =3.8, Gf =0.8, 0'e2 =0.8

No of Experimental |Optimal Master D-value (Optimal | Worst Design | Master D-value (Worst | D-efficiency
Runs (N) Designs Designs Designs) Design Designs) %
24 R=8, b=3 a=4,r=2 0.08 R=12, b=2 a=2,r=6 0.002 29.2
30 R=10,b=3 | a=5,r=2 | 0.28 R=15, b=2 a=3,r=5 0.020 415
36 R=12,b=3 | a=6, r=2 0.74 R=18, b=2 a=2,r=9 0.010 238
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4.4. Discussion of Results

The optimal designs and the worst designs corresponding to each N are unchanged in seven of the nine preliminary
vectors used. The changes are observed in the last configuration of sub-section 4.1 and 4.3. In general designs were the
absolute difference between the number of whole-plots and the number of levels of the split-plot factor is relatively

small |R - b| are the D-optimal designs while designs where this difference is large are the worst designs

If we classify the designs generated for every N using the structure of its masters designs (design at the first level
of randomization); designs with @ = and a<r are classified as Group-A and Group-B respectively. It is observed
that many designs in Group-A have higher efficiency values than Group-B. For example Table 10 below shows the
efficiency values for all candidates designs corresponding to N=56 using [2.5, 2.7, 2.8, 1, 1]. Figure 1 also shows the
efficiency value for all candidate designs corresponding to N=30 using [2.8, 2.5, 2.7,1, 1].

Table 10: D-efficiency REML of candidates designs for N=56 using
0'5 = 2.7,0‘2 =2.5, Gjﬁ =2.8, Uf :ZI.,Ge2 =1

Candidates Class of Designs Groups A: D-efficiency
Designs if a>r or Group B: if a<r REML
a=2,r=2,b=14 A 76.1
a=4,r=2,b=7 A 100
a=7,r=2,b=4 A 94.4
a=7, r=4, b=2 A 49.3
a=14, r=2, b=2 A 59.4
a=2, r=4, b=7 B 61.6
a=2,r=7,b=4 B 39.1
a=2, r=14, b=2 B 15.3
a=4, r=7, b=2 B 334

Figure 1: D-efficiencies of REML for candidates’ designs (N=30), against |R - b| and the class of design using

oﬁ =2.8, 6; =2.5, ajﬂ = 2.7,65 :ZI.,O'e2 =1

120
100 l-100A

80 [ 737B
60 W 627A

0518 [[14438B

B 928A

D-efficiency

40
20

|R-b]

5. Summary and Conclusions

This work embarks on a search for D-optimal designs in a completely randomized split-plot experiment. The
whole-plot factor and split-plot factor are assumed to be random factors. A design construction algorithm was written to
generate a group of balanced designs and to compare them for D-optimality using the derived asymptotic variances of
the REML estimators. The designs generated were classified based on the structure of their master design. Comparisons
were made using 9 different preliminary vectors of magnitude of variance components where the factor variances are

larger than the error variances. The results show that designs in Group-A with relatively small |R—b| show a

substantial gain in statistical efficiency than other designs. Although three preliminary vectors were used, in each case
for comparisons in this work, the results of several other preliminary vectors where the factor variances were larger than
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the error variances show largely the same choice of optimal designs as those presented in this paper. In general, the
experimenter should choose a design where the number of whole-plots and the level it is sub-divided into is relatively
small and should also ensure that the number of levels of the factor used at the first level of randomization be at least as
large as the number of whole-plots within each level.
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OPTIMALIEJI PLANAI APRIBOTIESIEMS DIDZIAUSIOJO TIKETINUMO IVERTINIAMS
ATSITIKTINIAME PADALYTUJU SKLYPU MODELYJE

Oluwole Nuga, G. N Amahia, Fatai Salami

Santrauka. Straipsnyje nagrinéjamas eksperimento plano efektas (poveikis, jtaka) dispersijos komponenciy didziausio tikétinumo
jvertiniui visiskai randomizuotame padalytyjy sklypy modelyje. Modelis naudojamas apraSyti atsaka, kai eksperimente iStisinio ir
padalytojo sklypo faktoriai yra atsitiktiniai. Darbe sudarytos subalansuoty plany su vienodu eksperimenty skaiéiumi grupés ir
palygintas jy optimalumas naudojant iSvesta Fisherio informacijos matricg bei apribotuosius didZiausiojo tikétinumo jvertinius.
Optimalumas matuojamas D-optimalumo kriterijumi; gaunami optimalieji planai priklauso nuo dispersijos komponenciy santykiniy
dydziy. Rezultatai rodo, kad tuomet, kai faktoriy dispersijos yra didesnés uz paklaidy dispersijas, plany, kuriuose absoliutinis
skirtumas tarp istisiniy sklypy skai¢iaus ir padalintyjy sklypy faktoriaus lygiy kiekio yra santykinai mazas, statistinis efektyvumas,
palyginti su kitais planais, gerokai iSauga.

ReikSminiai ZodZiai: iStisinis sklypas, padalytasis sklypas, asimptotiné dispersija, dispersinés komponentés, optimalumo kriterijai
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