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Abstract. The design effect for the restricted maximum likelihood estimators of variance components in a 

completely randomized split-plot model is studied. The model was used to represent the response generated from 

an experimental scenario where the whole-plot and split-plot factors are random. The work generated groups of 

balanced designs from same number of experimental runs and compared them for optimality using the derived 

Fisher Information matrix of the restricted maximum likelihood (REML) estimators. The measure for optimality 

is the D-optimality criterion; the resulting optimal designs depend on the relative magnitudes of the true values 

of the variance components. The results show that when the factor variances are larger than the error variances, 

designs where the absolute difference between the number of whole-plots and the number of levels of the split-

plot factor is relatively small show substantial gain in statistical efficiency over other designs. 

Keywords: Whole-plot, Split-plot, asymptotic covariance, variance components, optimality criteria.   

1. Introduction 

The importance of split-plot designs in industrial experiments has been long recognized. This is because it’s 

typically infeasible to perform a complete randomization of experimental runs. Split-plot designs are used if one or 

more experimental factor is hard to change and the other experimental factors are easy to change. These factors are 

distinguished by the ease in which they can be changed from one experimental run to the other: Box et al (2005) 

described an experiment to study the corrosion resistance of steel bars treated with four coatings at three furnace 

temperatures. Furnace temperature is the hard-to-change factor because of the time it takes to reset the furnace and 

reach a new equilibrium temperature. Many works in literature for designing split-plot experiments assume fixed 

experimental factor effects. Bingham and Sitter (2001) use a split-plot model for experiments in the wood industry. 

Goos and Vanderbroek (2001) computed D-optimal split-plot designs for an autonomously determined number and size 

of whole-plot. Goos and Vandebroek (2003) later extended the work by developing an algorithm to construct D- 

optimal designs for the number and size of whole-plot. Goos and Donev (2007) presented an algorithmic approach to 

construct tailor made split-plot experiments without having to specify a candidate set. The results of these works cannot 

be applied to situations where the levels of one or more experimental factors are random variables. 

This article is devoted to obtaining an optimal design for a balanced completely randomized split-plot experiment 

with random whole-plot and split-plot factors where the ANOVA sums of squares are orthogonal. The main aim is to 

allocate experimental resources for a fixed number of runs. Consider an experiment to study the variation in the 

intensity of radiation from a furnace at different temperatures and locations. Because of the time it would take to reset 

the furnace temperature for each run, the hard to change factor or the whole-plot factor is temperature and the easy to 

change factor or the split-plot factor is location. The levels of temperature and the locations were randomly chosen from 

well-defined ranges and the sizes of their variances indicate variability in the intensity of radiation across locations and 

temperature. In the next section we describe the split-plot model used to represent response from the experiments, the 

variance structure and the steps to derive the fisher information matrix of the restricted maximum likelihood (REML) 

estimators of variance components accordingly. In section 3 we describe the procedure that will enable us generate the 

design space, we also present the computer algorithm written in the context of the described methodology. In section 4 

http://www.statisticsjournal.lt/
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generated designs are compared for D-optimality with the aid of the written computer algorithm using selected 

configurations. Conclusions are presented in section 5. 

2. Split-plot model 

The model equation for the split-plot design with one whole-plot factor (Factor A) and one split-plot factor (Factor 

B) can be written as 

ijkikijjiijk ey   )( ,                                  (1) 

bj ,...,2,1 , .,...,2,1 irk 
 

 

Here 

a=    the number of levels of the whole-plot factor, 

b =   the number of levels of the split-plot factor, 

ir =   the number of whole-plot within each level of the whole-plot factor A, 
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 ,        R = total number of whole-plots, 

ijky is the response at the 
thk  replicate of the 

thi  level of the random factor A and the 
thj  level of the random factor B, 

  is the general mean, i  is the effect of the 
thi  level of random factor A , j  is the effect of the 

thj  level of 

random factor B, ij)(   is the random interaction effect of the 
thi   level of factor A and the  

thj  level of factor B, ik  

is the  error term of the 
thk  replicate of the 

thi  level of factor A (Whole-Plot error term), ijke  is the error term 

corresponding to individual ijky  (Split-Plot error term). 

2.1. Matrix Formulation of the Random Effects Model 

In matrix notations, the full random model can be written as  

 

,)(11 43210 ijijikNN ZZZZeZY  
       

                     (2) 

Y is a vector of N observations, N1  is a vector of means, the Z’s are indicator matrix associated with individual 

random effects and the two error terms. The Z’s are matrices of 0 and 1, 
4Z  is a aN  matrix, 3Z is a bN  matrix, 

2Z
 
is a abN  matrix, 

1Z  is a RN matrix, 0Z  is an identity of order N . It is assumed that 
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The random effects are assumed to be mutually and completely uncorrelated i.e. 

baji  0)cov(  , Raiki  0)cov(  etc.  

Under these assumptions, the variance covariance matrix of the observation )var( y can be written as 

𝑉 =
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The structure of the covariance matrix depends on the design.  

The inverse of V can be obtained by following the general procedure given by Searle (1979). The general form for 

V given by Searle (1979) is 
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The inverse is 
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Following the procedure, (5) is obtained explicitly as 
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where 

aJ : matrix of order ‘a’ with all element unity, 

aI : Identity matrix of order ‘a’, 
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Simplifying (5) by joining similar terms and carrying out the Kronecker product results in  
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2.2. Method of Estimation 

In estimating variance components, the restricted maximum likelihood (REML) estimators are derived by 

maximizing that part of the likelihood function which is location invariant. It is a useful property which allows the 

estimation of variance components by taking into account the degrees of freedom that are involved in estimating fixed 

effects. The resultants estimators are the same as the ANOVA estimators that are minimum variance unbiased 

estimators. The Fisher Information (FI) matrix of the REML estimators as given by Searle et al. (1992) is 

𝐹𝐼𝑅𝐸𝑀𝐿(= 1/2{𝑡𝑟(𝑃𝑍𝑖𝑍𝑖
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′)}𝑖,𝑗=0,1,..,4 ,                                  (8) 
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′). For the calculation task at hand,  
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the derivation of two of the fifteen elements of (8)  
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In this work, we seek the design that maximizes the determinant of the derived Fisher Information matrix. 

3. Design Space Generation 

The steps to generate candidate designs corresponding to a number of experimental runs for the random effect will 

be discussed in this section. 

For a fixed number of experimental runs RbarbN   where arR  , the total number of designs that can be 

generated (Design Space) includes all distinct combination a, b, r satisfying the following conditions: 

(i)  R includes all non-prime numbers between this range 4≤R≤ N/2 that are factors of N. 

(ii)  b includes all values  
R

Nb   for each R generated in (i).  

(iii)  2 ≤ a<R i.e. ‘a’ is a multiplier of R. 

 

Where    a =   the number of levels of the whole-plot factor, 

b =   the number of levels of the split-plot factor. 

ir =   the number of whole-plot within each level of the whole-plot factor A. 

The number of possible designs equals the total number of ways of distributing R equally into a, i.e. the total 

number of ways of distributing whole-plots into levels of the whole-plot factor in such ways that form a balanced one-

way design. 
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Example. 

N= 30, 

R= 6, 10, 15 (non-prime numbers between 4 and 15 that are factors of N). 

When R=6,  b=5,  {a=2, r=3, b=5},  {a=3, r=2, b=5}. 

When R=10,  b=3,  {a=2, r=5, b=3},  {a=5, r=2, b=3},  

When R=15,  b=2,  {a=3, r=5, b=2},  {a=5, r=3, b=2}. 

3.1. The Algorithm 

A computer program was written in the R programming language to reflect the methodology that has been 

presented. The general algorithm is presented: 

Step 1: Choose the number of experimental runs e.g. N=30 (design space is generated) 

Step 2: Specify the available information about each variance component 

Step 3: Calculate the criterion of optimality for all candidate designs in the design space, i.e. the determinant (D-

value) for each design is shown and optimal designs depending on the criterion of optimality are identified. 

The R program implementing this algorithm will be made available upon request. 

4.0. Comparison and Optimality 

In this section comparisons were made using selected configurations of the magnitudes of variances. In many 

studies on variance components, the factor variance components are usually larger than the error variance components. 

Goos (2002) recommended that whenever there is no prior information about the ratio of the error variances, then we 

can set this ratio to be equal to one. The work therefore compares the design based on the configurations.  
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The idea is to allow each factor variance components to be the dominating variance components. 

4.1. Results when the whole-plot variance is largest 

Two configurations {(i) and (ii) above} and three preliminary vectors were used to compare designs when the 

whole-plots variance is the largest variance. The three preliminary vectors are [2.8, 2.7, 2.5, 1, 1], [6.5, 1, 0.9. 0.8, 0.8] 

and [3.8, 0.9, 3.7, 0.8, 0.8]. Tables 1, 2 and 3 show the D-optimal designs (designs that have the largest determinant of 

the derived fisher information matrix), the D-worst designs (designs that have the lowest determinant of the derived 

information matrix) and the D-efficiency corresponding to N=24, 30, 36 for each of the three preliminary vectors. The 

D-efficiency of a given design compares the determinant of that design with the determinant of another comparable 

design, where D in the terms D-optimal, D-worst, D-value and D-efficiency stands for determinant. 

The relative D-efficiency of design 1 compared to design 2 is given as D-efficiency =
v

D
D

1

2

1 






 .  

Where 
1D  is the determinant of the Fisher information matrix of design 1 and 

2D the determinant of the fisher 

information matrix of design 2, and v is the number of parameters corresponding to the factors and interaction effect. 

For the random effect model v=3. D-efficiency is used to evaluate the performance of D-optimal designs over the D-

worst designs. 

 

Table 1: D-optimal designs and D-worst designs for different number of experimental runs using  

1,1,5.27.2,8.2 22222  e   

No of Experimental 

Runs (N) 

Optimal 

Designs 

Master 

Designs 

D-value (Optimal 

Designs) 

Worst Design  Master Design D-value (Worst 

Designs) 

D-efficiency 

% 

24 R=6, b=4 a=3, r=2 0.05 R=12, b=2 a=2, r=6 0.002 34.2 

30 R=6, b=5 a=3, r=2 0.16 R=15, b=2 a=3, r=5 0.014 44.4 

36 R=6, b=6 a=3, r=2 0.41 R=18, b=2 a=2, r=9 0.010 29.0 

 

Table 2: D-optimal designs and D-worst designs for different number of experimental runs using  

8.0,8.0,9.0,1,5.6 22222  e   

No of Experimental 

Runs (N) 

Optimal 

Designs 

Master 

Designs 

D-value (Optimal 

Designs) 

Worst Design  Master Design D-value (Worst 

Designs) 

D-efficiency 

% 

24 R=6, b=4 a=3, r=2 1.06 R=12, b=2 a=2, r=6 0.07 40.4 

30 R=6, b=5 a=3, r=2 3.31 R=15, b=2 a=3, r=5 0.47 52.2 

36 R=6, b=6 a=3, r=2 8.06 R=18, b=2 a=2, r=9 0.20 29.2 

 

Table 3: D-optimal designs and D-worst designs for different number of experimental runs using 

8.0,8.0,7.3,9.0,8.3 22222  e   

No of Experimental 

Runs (N) 

Optimal 

Designs 

Master 

Designs 

D-value (Optimal 

Designs) 

Worst Design  Master Design D-value (Worst 

Designs) 

D-efficiency 

% 

24 R=8, b=3 a=4, r=2 0.084 R=12, b=2 a=2, r=6 0.002 28.8 

30 R=10, b=3 a=5, r=2 0.290 R=15, b=2 a=3, r=5 0.020 41.0 

36 R=12, b=3 a=6, r=2 0.770 R=18, b=2 a=2, r=9 0.006 19.8 

 

4.2. Results when the split-plot variance is largest 

Two configurations {(iii) and (iv) above} and three preliminary vectors were used to compare designs when the 

whole- plots variance is the largest variance. The three preliminary vectors are [2.7, 2.8, 2.5, 1, 1], [1, 6.5, 0.9. 0.8, 0.8] 

and [0.9, 3.8, 3.7, 0.8, 0.8]. Tables 4, 5, and 6 show the optimal designs, the designs with the worst D-values and D-

efficiency values corresponding to N=24, 30, 36 for each of the three preliminary vectors. 
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Table 4: D-optimal designs and D-worst designs for different number of experimental runs using  

1,1,5.2,8.2,7.2 22222  e   
No of Experimental 

Runs (N) 

Optimal 

Designs 

Master 

Designs 

D-value (Optimal 

Designs) 

Worst Design  Master Design D-value (Worst 

Designs) 

D-efficiency 

% 

24 R=6, b=4 a=3, r=2 0.058 R=12, b=2 a=2, r=6 0.002 32.5 

30 R=6, b=5 a=3, r=2 0.160 R=15, b=2 a=3, r=5 0.014 44,4 

36 R=6, b=6 a=3, r=2 0.410 R=18, b=2 a=2, r=9 0.006 24.5 

 

Table 5: D-optimal designs and D-worst designs for different number of experimental runs using  

8.0,8.0,9.0,5.6,1 22222  e   

No of Experimental 

Runs (N) 

Optimal 

Designs 

Master 

Designs 

D-value (Optimal 

Designs) 

Worst Design Master Design D-value (Worst 

Designs) 

D-efficiency 

% 

24 R=6, b=4 a=3, r=2 0.79 R=12, b=2 a=2, r=6 0.06 42.3 

30 R=6, b=5 a=3, r=2 2.63 R=15, b=2 a=3, r=5 0.33 50.1 

36 R=6, b=6 a=3, r=2 6.67 R=18, b=2 a=2, r=9 0.18 30.0 

 

Table 6: D-optimal designs and D-worst designs for different number of experimental runs using  

8.0,8.0,9.0,8.3,7.3 22222  e   
No of Experimental 

Runs (N) 

Optimal 

Designs 

Master 

Designs 

D-value (Optimal 

Designs) 

Worst Design Master Design D-value (Worst 

Designs) 

D-efficiency 

% 

24 R=6, b=4 a=3, r=2 0.32 R=12, b=2 a=2, r=6 0.02 39.7 

30 R=6, b=5 a=3, r=2 1.02 R=15, b=2 a=3, r=5 0.13 50.3 

36 R=6, b=6 a=3, r=2 2.51 R=18, b=2 a=2, r=9 0.07 30.3 

 

4.3. Results when the interaction variance is largest 

Two configurations {(v) and (vi) above} and three preliminary vectors were used to compare designs when the 

whole-plots variance is the largest variance. The three preliminary vectors are [2.5, 2.7, 2.8, 1, 1], [0.9, 1, 6.5. 0.8, 0.8] 

and [3.7, 0.9, 3.8, 0.8, 0.8]. Tables 7, 8, and 9 show the optimal designs, the designs with the worst D-values and D-

efficiency values corresponding to N=24, 30, 36 for each of the three preliminary vectors. 

 

Table 7: D-optimal designs and D-worst designs for different number of experimental runs using  

1,1,8.2,5.2,7.2 22222  e   

No of Experimental 

Runs (N) 

Optimal 

Designs 

Master 

Designs 

D-value (Optimal 

Designs) 

Worst Design Master Design D-value (Worst 

Designs) 

D-efficiency 

% 

24 R=6, b=4 a=3, r=2 0.043 R=12, b=2 a=2,r=6 0.002 36.0 

30 R=6, b=5 a=3, r=2 0.140 R=15, b=2 a=3,r=5 0.012 44.1 

36 R=6, b=6 a=3, r=2 0.370 R=18, b=2 a=2,r=9 0.005 23.8 

 

Table 8: D-optimal designs and D-worst designs for different number of experimental runs using  

8.0,8.0,5.6,9.0,1 22222  e   

No of Experimental 

Runs (N) 

Optimal 

Designs 

Master 

Designs 

D-value (Optimal 

Designs) 

Worst Design Master 

Design 

D-value (Worst 

Designs) 

D-efficiency 

% 

24 R=6, b=4 a=3, r=2 0.04 R=12, b=2 a=2, r=6 0.001 29.2 

30 R=6, b=5 a=3, r=2 0.16 R=15, b=2 a=3, r=5 0.010 39.7 

36 R=6, b=6 a=3, r=2 0.45 R=18, b=2 a=2, r=9 0.002 16.4 

 

Table 9: D-optimal designs and D-worst designs for different number of experimental runs using  
 

8.0,8.0,8.3,9.0,7.3 22222  e   

No of Experimental 

Runs (N) 

Optimal 

Designs 

Master 

Designs 

D-value (Optimal 

Designs) 

Worst Design Master 

Design 

D-value (Worst 

Designs) 

D-efficiency 

% 

24 R=8, b=3 a=4, r=2 0.08 R=12, b=2 a=2,r=6 0.002 29.2 

30 R=10, b=3 a=5, r=2 0.28 R=15, b=2 a=3,r=5 0.020 41.5 

36 R=12, b=3 a=6, r=2 0.74 R=18, b=2 a=2,r=9 0.010 23.8 
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4.4. Discussion of Results 

The optimal designs and the worst designs corresponding to each N are unchanged in seven of the nine preliminary 

vectors used. The changes are observed in the last configuration of sub-section 4.1 and 4.3. In general designs were the 

absolute difference between the number of whole-plots and the number of levels of the split-plot factor is relatively 

small bR   are the D-optimal designs while designs where this difference is large are the worst designs     

If we classify the designs generated for every N using the structure of its masters designs (design at the first level 

of randomization); designs with ra   and ra 
 
are classified as Group-A and Group-B respectively. It is observed 

that many designs in Group-A have higher efficiency values than Group-B.  For example Table 10 below shows the 

efficiency values for all candidates designs corresponding to N=56 using [2.5, 2.7, 2.8, 1, 1]. Figure 1 also shows the 

efficiency value for all candidate designs corresponding to N=30 using [2.8, 2.5, 2.7,1, 1].  

 

Table 10: D-efficiency REML of candidates designs for N=56 using

1,1,8.2,5.2,7.2 22222  e   
Candidates  

Designs 

Class of Designs Groups A:  

if a>r or  Group B: if a<r 

D-efficiency  

REML 

a=2, r=2, b=14 A 76.1 

a=4, r=2, b=7 A 100 

a=7, r=2, b=4 A 94.4 

a=7, r=4, b=2 A 49.3 

a=14, r=2, b=2 A 59.4 

a=2, r=4, b=7 B 61.6 

a=2, r=7, b=4 B 39.1 

a=2, r=14, b=2 B 15.3 

a=4, r=7, b=2 B 33.4 

 

Figure 1: D-efficiencies of REML for candidates’ designs (N=30), against bR   and the class of design using

1,1,7.2,5.2,8.2 22222  e   

 

5. Summary and Conclusions 

This work embarks on a search for D-optimal designs in a completely randomized split-plot experiment. The 

whole-plot factor and split-plot factor are assumed to be random factors. A design construction algorithm was written to 

generate a group of balanced designs and to compare them for D-optimality using the derived asymptotic variances of 

the REML estimators. The designs generated were classified based on the structure of their master design. Comparisons 

were made using 9 different preliminary vectors of magnitude of variance components where the factor variances are 

larger than the error variances. The results show that designs in Group-A with relatively small bR  show a 

substantial gain in statistical efficiency than other designs. Although three preliminary vectors were used, in each case 

for comparisons in this work, the results of several other preliminary vectors where the factor variances were larger than 
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the error variances show largely the same choice of optimal designs as those presented in this paper. In general, the 

experimenter should choose a design where the number of whole-plots and the level it is sub-divided into is relatively 

small and should also ensure that the number of levels of the factor used at the first level of randomization be at least as 

large as the number of whole-plots within each level. 
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OPTIMALIEJI PLANAI APRIBOTIESIEMS DIDŽIAUSIOJO TIKĖTINUMO ĮVERTINIAMS 

ATSITIKTINIAME PADALYTŲJŲ SKLYPŲ MODELYJE 

Oluwole Nuga, G. N Amahia, Fatai Salami 

Santrauka. Straipsnyje nagrinėjamas eksperimento plano efektas (poveikis, įtaka) dispersijos komponenčių didžiausio tikėtinumo 

įvertiniui visiškai randomizuotame padalytųjų sklypų modelyje. Modelis naudojamas aprašyti atsaką, kai eksperimente ištisinio ir 

padalytojo sklypo faktoriai yra atsitiktiniai. Darbe sudarytos subalansuotų planų su vienodu eksperimentų skaičiumi grupės ir 

palygintas jų optimalumas naudojant išvestą Fisherio informacijos matricą bei apribotuosius didžiausiojo tikėtinumo įvertinius. 

Optimalumas matuojamas D-optimalumo kriterijumi; gaunami optimalieji planai priklauso nuo dispersijos komponenčių santykinių 

dydžių. Rezultatai rodo, kad tuomet, kai faktorių dispersijos yra didesnės už paklaidų dispersijas, planų, kuriuose absoliutinis 

skirtumas tarp ištisinių sklypų skaičiaus ir padalintųjų sklypų faktoriaus lygių kiekio yra santykinai mažas, statistinis efektyvumas, 

palyginti su kitais planais, gerokai išauga.  

 

Reikšminiai žodžiai: ištisinis sklypas, padalytasis sklypas, asimptotinė dispersija, dispersinės komponentės, optimalumo kriterijai 
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