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Abstract. The aim of this paper is to study the interplay between balanced sampling, non-response and calibrated
estimator by simulation. The results of seven strategies, embracing a combination of balanced sampling via the cube
method, simple random cluster sampling, adjustment for non-response, Horvitz–Thompson estimator of the total and
calibration of design weights, are compared. Auxiliary information is used for all strategies at least at one of the stages
(sampling or estimation). This auxiliary information consists of indicator variables for sex, age groups and urban/rural
living area, and their totals. Real Labour Force Survey data of Statistics Lithuania are used for simulation. Bias, variance
and relative mean squared error are measures of accuracy for the comparison of results.
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1. Introduction

The idea of balanced sampling is very old and goes back to the beginning of survey sampling. In
a way, it has already been used in the works of Kiaer [7]. Despite the fact that this concept evolved
and was touched by many survey statisticians, it became known for a wide community of survey
statisticians after the book [6] by Y. Tillé was published and its author has given a lot of talks at the
conferences introducing sampling design, which he called “balanced sampling design”.

The values of auxiliary variables are used in this method at the stage of sample selection. Another
method, which uses the values of auxiliary variables at the estimation stage, is calibration of design
weights. It was introduced by J.-C. Deville and C.-E. Särndal in 1992 [1]. This method became very
popular at the statistical offices of many countries and is often used especially for estimation in social
surveys.

The aim of the current paper is to study by simulation the use of balanced sampling and calibration
together and the effect introduced by non-response into the process of sample selection and estimation.

2. Statistical methods

2.1. Probability sampling

Let us study a finite population U = {1,2, ...,N}, with the study variable y defined for elements of
the population y1,y2, ...,yN . The parameter of interest is a total ty = ∑k∈U yk.

Any subset s = {i1, i2, ..., in} ⊂ U is called a sample selected from a finite population. A random
sample S from the finite population is called probabilistic sample if

a) the elements of the set of all possible samples S = {s1,s2, ...,sV} (realizations of S) can be enu-
merated, and to any possible sample a probability of its selection p(sv) = P(S = sv), v = 1,2, ...,V ,
is attached, so that

V

∑
v=1

p(sv) = 1;

b) any element of the population belongs to at least one possible sample;
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c) technical possibility is available for the selection of indicated samples with the indicated proba-
bilities.

Distribution p(·) is called a sampling design. The population U may be a set of clusters, primary
sampling units, consisting of population elements – secondary sampling units. Probability πk = P(s ∈
S : k ∈ s), πk > 0, is called element inclusion probability to the sample, dk = 1/πk is called a design weight.

The population total may be estimated from the probability sample by a Horvitz–Thompson
estimator ([4]):

t̂HT = ∑
k∈S

yk

πk
, (1)

which is unbiased, with the variance

Var(t̂HT ) = ∑
k∈U

∑
l∈U

(πkl−πkπl)
yk

πk

yl

πl
.

The estimator of variance
V̂ar(t̂HT ) = ∑

k∈S
∑
l∈S

πkl−πkπl

πkl

yk

πk

yl

πl

is unbiased for πkl > 0.
A fixed-size sampling design, assigning selection probability p(s) = 1/Cn

N to any n size collection s of
different elements and p(s) = 0 to any other collection of elements, is called simple random sampling. It
is sampling design without replacement with inclusion probabilities πk = n/N, πkl = n(n−1)/(N(N−1))
for k 6= l, k, l ∈U.

2.2. Balanced sampling

Let us take a vector of auxiliary variables x=(x(1),x(2), ...,x(J))′ with the values xk =(x(1)k ,x(2)k , ...,x(J)k )′,
k ∈U, known for the whole population before the sample selection. If this vector characterizes a study
variable in the population, it is natural to seek for such a version of random sample S for which the
Horvitz–Thompson estimator of the population total of auxiliary variables remains equal to the true
total:

∑
k∈S

xk

πk
= tx, tx =

N

∑
k=1

xk. (2)

Let us suppose inclusion probabilities π1,π2, ...,πN are given. According to [6], the sampling design
p(·) is said to be balanced with respect to auxiliary vector x = (x(1),x(2), ...,x(J))′ if it satisfies (2).

In the case of a social survey such kind of design can imply, for example, that Horvitz–Thompson
estimates of the population size for some groups are equal to the true values if the components of the
auxiliary vectors are chosen as indicators of these groups.

A question arises: is it always possible to select balanced samples, satisfying (2) for given variables
x(1),x(2), ...,x(J)? An exhaustive answer to this question is given in [6], [7] and many other papers by
Deville and Tillé.

Tillé suggested an algorithm for the selection of a balanced sample, which is called a cube method
because of the geometric representation of balanced sampling design by a random walk on an N-
dimensional cube. First of all, let us note that for a fixed sample size n and only one auxiliary variable
x with the values xk = πk, k ∈U, any probability sample will be balanced with respect to this variable,
because the balancing equation is satisfied for any sample:

∑
k∈S

xk

πk
= ∑

k∈S
1 = ∑

k∈U
I(k ∈ S) = ∑

k∈U
πk = n.

Now, let us express a sample S as a vector of indicators s = (I1, I2, ..., IN)
′ with

Ik = I(k ∈ S) =

{
1, k ∈ S,
0, k /∈ S.

(3)
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Such a sample can be represented as a vertex of an N-dimensional unit cube. Then balancing equations
(2) may be rewritten as

∑
k∈U

xkIk

πk
= tx

or

∑
k∈U

x( j)
k Ik

πk
= tx j, j = 1,2, ...,J.

These balancing equations should be satisfied.
In order to construct a balanced sample, we should come from the opposite direction and look for

the vector a = (a1,a2, ...,aN)
′, which satisfies the system of equations

∑
k∈U

x( j)
k ak

πk
= tx j, j = 1,2, ...,J. (4)

This is a system of J linear equations with N unknowns a1,a2, ...,aN , and it follows from linear algebra
so that, without restriction of the generality, the equation system can be rewritten as

J

∑
k=1

x( j)
k ak

πk
= tx j−

N

∑
k=J+1

x( j)
k ak

πk
,

and for any choice of N−J components aJ+1, ...,aN , a unique solution a1, ...,aJ of (4) exists, if det(A) 6= 0
with

A =

x(1)1 /π1 ... x(J)1 /π1
... ... ...

x(1)J /πJ ... x(J)J /πJ

 .

Generally, a solution a of an equation system (4) may consist of any numbers. If we succeed to find
a solution a consisting of components equal to 0 and 1, this solution will give us a balanced sample:
s = a. Otherwise, a balanced sample is not selected, and a vector I = (I1, I2, ..., IN)

′, Ik = 0 or Ik = 1,
k = 1,2, ...,N, I1+ ...+ IN = n, close to the solution a = (a1, ...,aN)

′ in a way, should be found. The vector
I will indicate a sample s = I which is approximately balanced and its finding is named a rounding
problem. Unfortunately, a problem to find the vector I is often faced in practice. The cube method
is one of the solutions to this problem. The method consists of two phases: flight phase and landing
phase. The flight phase means a solution of the linear equation system (4) by the random walk starting
at the point πππ = (π1,π2, ...,πN)

′ and stoping at the point a = (a1,a2, ...,aN)
′, which satisfies the equation

system (4) and is on the ridge of the N dimensional cube. The landing phase – rounding the solution
a obtained in the flight phase to the closest vertex of the cube I = (I1, I2, ..., IN)

′ if the flight phase did
not give it. The balanced sample cannot be reached exactly if one of the constraints in (4) is a fixed
sample size and sum of the inclusion probabilities is not an integer: ∑k∈U πk 6= n. A solution of the
rounding problem by the cube method is presented in [6], [7] theoretically, and also implemented into
a software R package sampling [8] practically. It has to be mentioned that the elements of balanced
sample have predefined inclusion probabilities; therefore a Horvitz–Thompson estimator of the total
can be used. The estimator of variance for this estimator without using joint inclusion probabilities
is also given in [7].

2.3. Calibrated estimator

Let us suppose a probability sample s is selected and data from its elements are collected. Let us
suppose we have a vector of auxiliary variables x = (x(1),x(2), ...,x(J)) with the values of the sampled
elements and known population totals tx = (tx1, ..., txJ)

′. Let us fix a sample s∈ S . A calibrated estimator
of the total ty is such an estimator t̂yw = ∑k∈s wkyk, whose weights wk, k ∈ s, satisfy the requirements:

a) wk differ as little as possible from the design weights dk = 1/πk in the sense of the distance
function

L(wk,dk,qk,k ∈ s) = ∑
k∈s

(wk−dk)
2

dkqk
→min,
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qk are freely chosen constants;

b) calibration equations are valid
t̂xw = ∑

k∈s
wkxk = tx. (5)

We see that the calibration equation (5) is similar to the balancing equation (2). The difference
is in the weights; also all values of x are needed for balancing before sample selection; the values of x
for the selected elements only and totals tx are needed for the calibration of the design weights at the
estimation stage. The connection between these two methods is widely discussed in [7].

2.4. Dealing with non-response

Non-response is unavoidable in any real survey. Probabilities for the population elements to
respond to the survey questionnaire may be equal or non-equal. When non-response occurs, the bias
of the estimator for a population parameter is almost unavoidable. Then the aim of the statistician is
to select an estimator of the parameter with the bias which is not too large and variance which is not
too high. Many estimators are known for the estimation of parameters in the case of non-response.
Here some of them are applied.

Reweighting estimator. Let s(r) be a subsample of respondents s(r) ⊂ s. The probability to get data
from the population element can be expressed as

π
(r)
k = P(k ∈ s(r)) = P(k ∈ s(r)|s)P(k ∈ s) = κkπk,

where κk is the response probability of the element k, k ∈ U [4]. The response probability will be
considered as known in our study; therefore, the Horvitz–Thompson estimator will be used to estimate
the total from the sample of respondents s(r).

Imputation by logistic regression. The probability of a population element to obtain a value 1 for a
binary study variable y will be simulated by the logistic regression model [2]:

P(y = 1) =
exp{x′βββ}

1+ exp{x′βββ}
,

where x = (1,x(1), ...,x(J))′ is a matrix of auxiliary variables and βββ = (β0,β1, ...,βJ)
′ is a vector of coeffi-

cients. Model coefficients are estimated from the observations available using the maximum likelihood
method, and estimates P̂(yk = 1) are obtained. After that, the values yk are simulated as values of
Bernoulli random variables with probabilities of success P̂(yk = 1) and are denoted by ŷk.

Multiple imputation. The data of the sampled elements which would be available in the case of full
response are called real data. If some elements are not responding, then their real data are not known.
If the statistician makes certain assumptions about the non-response distribution and imputes the
values of the variable for missed observations, all values of the sampled elements become available for
that variable, but some of them are not real. The imputation of missing values means the input of
additional uncertainty into the data set, in comparison with the real data of the sampled elements.
The variance of the estimator for a population parameter based on the data with some imputed values
cannot be considered as variance of the estimator for a population parameter obtained for real data
because the variability of the imputed values should also be taken into account in the variance of the
estimator.

Using the method of logistic regression, all values of the study variable for sampled elements are
obtained, and a parameter of study θ = ty = ∑

N
k=1 yk is estimated. Let us denote the estimator by θ̂ = t̂y.

The method used for imputation is random. It is repeated a C number of times, C complete data sets
are obtained, and C estimators θ̂1, ..., θ̂C become available for θ. The estimator

θ̂C =
1
C

C

∑
c=1

θ̂c
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is obtained by multiple imputation, and its variance is estimated by

V̂ar(θ̂C) =WC +
C+1

C
B̂C (6)

with the component of variance within the complete samples

WC =
1
C

C

∑
c=1

V̂ar(θ̂c)

and the component of variance between the estimates for complete data sets

B̂C =
1

C−1

C

∑
c=1

(θ̂c− θ̂C)
2.

The term B̂C estimates the increase in variance Var(θ̂) due to imputation [3].

3. Problem formulation

Let us suppose a balanced sample is available for a social survey. Auxiliary information is used at
the stage of sample selection. Unfortunately, non-response occurs, and the set of respondents becomes
unbalanced. If the data of the respondents are only used to estimate the parameter of the finite
population, considering the set of the respondents to be selected for the sample, then a bias of the
estimator for the population parameter may arise, and the variance of this estimator is increasing
due to the lower size of the set of the respondents, in comparison with the selected sample size. The
sample should be adjusted for non-response. If imputation for missing values of a study variable is
used, then the sample balance is still preserved. If the reweighting of the respondent set is used, then
sample balance is destroyed, and the respondent set is no longer balanced.

The method using auxiliary information at the estimation stage is calibration of the design weights.
As it is mentioned in [7], the combination of balancing and calibration is a good strategy. Our aim is
to study this strategy introducing non-response by simulation.

Sample balancing and calibration with the same auxiliary variables means the usage of auxiliary
information twice. Our aim is to answer if it is worth doing.

4. Statistical simulation

4.1. Study population

Labour Force Survey data of Statistics Lithuania [5] are used for a simulation study. A fictitious
population consists of M = 21318 individuals aged 16–69. 19 586 of them are employed and 1 732 are
unemployed (inactive individuals are not included in the population). The parameter of interest is
the number of the unemployed in the population, and it will be estimated in the study. The study
variable y is binary with the value 1, if a person is unemployed, and 0 otherwise.

The population consists of N = 11236 households, with the average size of 1.9 persons. These
households are considered as clusters in our study. The cluster size equals to the number of its
members.

The same auxiliary variables will be used at the sampling design and estimation stage. The
variables having influence on the unemployment of a person are selected as auxiliary. From the data
analysis of the previous surveys, it is known that they are sex, age and urban/rural living area.
Age is categorized into groups [16;22], [23;29], [30;39], [40;49], [50;59], [60;69]. Indicator variables are
constructed for each of the groups mentioned above. Their population values and totals are considered
to be known before sampling.

Simulation is carried out with the sample size n = 100, 1000, 5000 clusters in order to perceive
dependency of the accuracy of the results on the sample size. Each strategy is repeated K = 10 times
and simulation results are averaged. The number of repetitions K is small and diminishes the validity
of the conclusions; however, computer resources available do not allow using more repetitions.
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4.2. Simulation strategies

The strategy is a pair consisting of sampling design and estimator. The following seven strategies
are studied:

1. Balanced cluster sampling and Horvitz–Thompson estimator. A cube method and auxiliary in-
formation is used at the sampling stage. Inclusion probabilities are considered to be proportional
to the household size: πk = nmk/M, k = 1,2, ...,N, mk – household size, m1 + ...+mN = M, n –
cluster sample size. We denote this strategy by BC+HT.

2. Simple random cluster sampling and calibrated estimator. The same auxiliary information as
for the first strategy is used here at the estimation stage only (SRCS+CAL).

3. Balanced cluster sampling, non-response, and calibrated estimator of the total. Reweighting is
used for non-response adjustment (BC+NR+Rew+CAL).

4. Balanced cluster sampling and calibrated estimator (BC+CAL).

5. Simple random cluster sampling, non-response and calibrated estimator (SRCS+NR+Rew+CAL).

6. Balanced cluster sampling, non-response and Horvitz–Thompson estimator (BC+NR+Rew+HT).

7. Balanced cluster sampling, non-response, logistic regression model for imputation of missing
values for a study variable, and Horvitz–Thompson estimator (BC+NR+Imp+HT).

As auxiliary information, the same indicator vectors for sex, age and urban/rural living area are used
for balanced sampling, calibration and logistic regression model.

Non-response has to be simulated. It is assumed that all household members are responding to
the survey questionnaire or not, and response probabilities of the household (and its members) are
assumed to be equal: κk = 0.9. The inclusion probability for a responding individual [4] is

π
(r)
k = P(k ∈ s(r)) = κkπk = 0.9πk. (7)

Here by s(r) is denoted a subsample of respondents. The inclusion probability π
(r)
k is used in the third,

fifth and sixth strategy. Because of equal and known response probabilities κk, the Horvitz–Thompson
estimator becomes a reweighting estimator.

For the seventh strategy, the probability of a household member to be unemployed is simulated
using the logistic regression model. Firstly, the logarithm of the odds ratio is estimated by the
maximum likelihood method with the use of the function glm of the software R package stats:

ln
P̂(y = 1)

1− P̂(y = 1)
= −4,0579+0,1625∗ xmale−0,4259∗ xurban +1,001∗ xagegr.1 +2,3502∗ xagegr.2

+2,1715∗ xagegr.3 +2,0546∗ xagegr.4 +2,0058∗ xagegr.5.

The values to be imputed instead of the missing values of the binary study variable y are simulated
according to the Bernoulli distribution with the probability of success P̂(yk = 1), and simulation results
are considered as the estimates ŷk. Consequently, the total of the study variable y is estimated as
follows:

t̂y = ∑
k∈s(r)

dkyk + ∑
k∈s\s(r)

dkŷk,

here dk = 1/πk are design weights, s \ s(r) is a subsample of non-respondents, ŷk are the values of the
study variable y for individuals, simulated by Bernoulli distribution using the logistic regression model.

The R package sampling [8] is used to estimate parameters and their variances. In the case of a
balanced sampling design, the estimates of variance for the estimator are computed by the function
varest using the Deville’s method for which only first-order inclusion probabilities are needed. In
the case of simple random cluster sampling for variance estimation of the estimator of the total, the
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function calibev is used for an unbiased estimator and for a calibrated estimator. To use it, second-
order inclusion probabilities for individuals πkl =P(k ∈ s, l ∈ s) have to be indicated. For simple random
cluster sampling, let us suppose two clusters and their elements are available: uk = {eki, i = 1, ...,mk}
and ul = {eli, i = 1, ...,ml}. For two elements, we have

πki,l j = P(eki ∈ s,el j ∈ s) = P(eki ∈ s|el j ∈ s)P(el j ∈ s),

P(eki ∈ s|ei j ∈ s) =

{
P(eki ∈ s|ek j ∈ s) = 1, for k = l, k = 1, ...,M,

P(eki ∈ s|el j ∈ s) = n−1
N−1 , for k 6= l, k, l = 1, ...,M,

P(el j ∈ s) =
n
N
.

From here, joint inclusion probabilities for two elements are

πki,l j =

{
n
N , for k = l, k = 1, ...,M
n−1
N−1

n
N , for k 6= l, k, l = 1, ...,M,

with i and j being the elements of the clusters, i = 1, ...,mk, j = 1,2, ...,ml.

5. Main results

For any strategy a sample was drawn K = 10 times, and the parameter θ = ty of a study variable y
was estimated by θ̂k, k = 1,2, ...,K. The accuracy measures for estimates are used as follows:

empirical mean or average of the estimates

¯̂
θ =

1
K

K

∑
k=1

θ̂k,

empirical bias
B̂ias(θ̂) = ¯̂

θ−θ,

relative empirical bias
R̂Bias(θ̂) = B̂ias(θ̂)/θ,

average of the variance estimates

V̂ar(θ̂k) =
1
K

K

∑
k=1

V̂ar(θ̂),

coefficient of variation

ĉv(θ̂) =

√
V̂ar(θ̂)

¯̂
θ

,

relative mean squared error

R̂MSE(θ̂) =

√
B̂ias

2
(θ̂)+V̂ar(θ̂)

¯̂
θ

.

The relative biases of the estimates of the total for balancing variables are presented in Table 1.
It shows a possibility to achieve complete balance of auxiliary variables for a small, medium and large
sample size. It is seen in Table 1 that for a small sample size (n = 100), the estimates of totals for
balancing variables are far from the real values due to the rounding problem arising essentially. Large
samples (N = 5000) do not encounter such a problem. It means that for a small sample size, it is
difficult to achieve balance of auxiliary variables. Therefore, if the study variable is correlated with
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auxiliary variables, the estimates of its total for small, not well-balanced sample sizes should not be
very precise. Table 1 also show, that balance for indicator variables characterizing smaller groups,
for example, age groups, is worse than balance for indicators characterizing large groups: sex and
living area. In other words, it can be said that the relative empirical bias of the estimates for the
total of auxiliary variable is higher for an indicator characterizing a small group than for an indicator
characterizing a large group (value of tx ji) in the balanced sample. Means for ten estimates of the
totals for auxiliary variables and their empirical biases are presented in Table 1.

Table 1. Empirical biases for the estimates of totals for balancing variables in balanced sampling design, sample
size n = 100, 1000, 5000

j i x ji tx ji R̂Bias(t̂x ji)
n = 100 n = 1000 n = 5000

Sex 1 1 Male 9 674 -0.0010 0.0118 0
2 Female 11 644 0.0009 -0.0098 0

Age 2

1 1 age g. 3 096 0.1670 0.0959 0.0048
2 2 age g. 1 700 -0.2582 -0.0282 -0.0118
3 3 age g. 2 899 -0.1397 -0.1787 -0.0028
4 4 age g. 4 978 -0.1006 0.1171 -0.0028
5 5 age g. 5 107 0.1508 -0.1999 0.0127
6 6 age g. 3 358 0.0164 0.1837 -0.0096

Area 3 1 Urban 14 635 -0.0095 0.0051 -0.0001
2 Rural 6 683 0.0208 -0.0111 0.0011

Multiple imputation is used to adjust a sample for non-response in Strategy 7. Simulation results
presented in Table 2 demonstrate an increase in the estimate for variance of the estimator of the total
due to imputation using logistic regression and Bernoulli distribution. They show that variance due
to imputation increases by about 6–15%. Results of estimation of the population the total ty for seven
strategies are presented in tables 3, 4 and 5.

Table 2. Results of multiple imputation, C = 10

n ¯̂ty V̂ar(¯̂ty) W 10 B̂10 B̂10 ·100/V̂ar(t̂y)(%)

100 2 258 241 469 226 576 13 539 5.6
1 000 1 758 19 779 16 411 3 062 15.5
5 000 1 725 2 365 2 118 225 9.5

Table 3. Estimates of accuracy measures for estimators of the total of a study variable for seven strategies,
n = 100

Strategy ¯̂ty V̂ar(t̂y) ĉv(t̂y) B̂ias(t̂y) R̂MSE(t̂y)

1. BC+HT 1 595 169 191 0.259 -137 0.272
2. SRCS+CAL 1 730 137 509 0.211 -2 0.214
3. BC+NR+Rew+CAL 1 740 178 696 0.242 8 0.243
4. BC+CAL 1 729 208 781 0.265 -3 0.264
5. SRCS+NR+Rew+CAL 1 692 208 339 0.265 -40 0.271
6. BC+NR+Rew+HT 1 992 228 248 0.244 260 0.273
7. BC+NR+Imp+HT 1 828 201 827 0.245 96 0.251
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Table 4. Estimates of accuracy measures for estimators of the total of a study variable for seven strategies,
n = 1000

Strategy ¯̂ty V̂ar(t̂y) ĉv(t̂y) B̂ias(t̂y) R̂MSE(t̂y)

1. BC+HT 1 716 17 168 0.076 -16 0.077
2. SRCS+CAL 1 768 12 863 0.064 36 0.067
3. BC+NR+Rew+CAL 1 672 17 166 0.079 -60 0.086
4. BC+CAL 1 621 17 977 0.083 -111 0.107
5. SRCS+NR+Rew+CAL 1 768 18 508 0.077 36 0.080
6. BC+NR+Rew+HT 1 899 21 374 0.077 167 0.117
7. BC+NR+Imp+HT 1 800 18 013 0.074 68 0.084

Table 5. Estimates of accuracy measures for estimators of the total of a study variable for seven strategies,
n = 5000

Strategy ¯̂ty V̂ar(t̂y) ĉv(t̂y) B̂ias(t̂y) R̂MSE(t̂y)

1. BC+HT 1 725 2 186 0.027 -7 0.027
2. SRCS+CAL 1 744 1 530 0.022 12 0.023
3. BC+NR+Rew+CAL 1 727 2 157 0.027 -5 0.027
4. BC+CAL 1 727 2 417 0.028 -5 0.029
5. SRCS+NR+Rew+CAL 1 714 2 408 0.029 -18 0.030
6. BC+NR+Rew+HT 1 924 2 914 0.028 192 0.104
7. BC+NR+Imp+HT 1 750 2 210 0.026 18 0.028

When comparing the results of tables 3–5, one should have in mind that balanced sampling is
applied with probabilities proportional to the cluster size, but the cluster size is not taken into account
in simple random cluster sampling. These differences may slightly influence the accuracy of the
estimates.

6. Discussion

Strategy 1 – balanced sampling and the Horvitz–Thompson estimator of the total – shows that
the estimator has empirical bias, which decreases with an increasing sample size. Beside the common
regularity property, the balance of samples for small sample sizes is not adequate, and it influences
empirical biases of the estimates.

Strategy 6 is obtained, appending non-response to Strategy 1. Empirical bias is observed. It
decreases with an increasing sample size, but still remains significant. The variance of the estimator
due to non-response also increased, and it influences RMSE for large samples.

Strategy 4 means balanced sampling, as for Strategy 1, but the Horvitz–Thompson estimator is
replaced by a calibrated estimator. Empirical bias is approximately the same as for Strategy 1, but
variance increases and relative measures of accuracy are also higher than for Strategy 1.

Strategy 3 consists of the conditions for Strategy 4 appended with non-response. The estimates
became closer to the estimates for Strategy 1. Relative measures of accuracy decreased for small
sample sizes, but remain unchanged for large sample sizes.

Strategy 7. Balanced sampling and non-response. A logistic regression model is used for the
imputation of the study variable values for non-responding elements, and the Horvitz–Thompson
estimator of the total is used. It is reasonable to compare this estimator with Strategy 6 because of
the same sampling design, the same estimator, but different adjustment for non-response. Biases are
smaller for Strategy 7 than for Strategy 6, and they are decreasing with an increasing sample size.

In comparison with Strategy 3, the variance estimates for Strategy 7 are higher. With increas-
ing sample sizes, the estimates of Strategy 7 approached the estimates obtained for the Strategy 3,
remaining a little bit higher, and the variances are higher.

Strategy 2. This is a strategy giving the best accuracy for the estimator of the total. The variance
estimates are lower than for Strategy 1 for any sample size. In the case of small sample sizes, there is



90 Application of balanced sampling, non-response and calibrated estimator

no bias for Strategy 2, which is significant for Strategy 1. In the simulation carried out, calibration
does not improve the accuracy in the case of balanced sampling without non-response (Strategy 4).
When there is no non-response, the classical Strategy 2 is the best.

Strategy 5. Simple random sampling, non-response and calibration. We compare the estimates
with the results of Strategy 3. Unfortunately, in the case of Strategy 5, the empirical biases are more
significant, and variance estimates are higher.

The calibration estimator in Strategy 4, in comparison with the Horvitz–Thompson estimator in
Strategy 1 for balanced sampling design, does not improve accuracy; all accuracy measures are higher
for the former. But if non-response occurs for balanced sampling design (Strategy 3) the calibrated
estimator shows more accurate results, in comparison with Strategy 4 without non-response. It should
be mentioned that the calibrated weights are random, but their variability is not taken into account
in the estimator of variance for the calibrated estimator.

There is no monotonicity in the change of bias due to an increasing sample size. It may occur
because of a small number of repetitions K = 10.

Conclusion. Simulation results for Labour Force Survey data show that
if there is no non-response, a simple random sample of clusters and a calibrated estimator of the
total (strategy 2) gives the highest accuracy;
if non-response occurs, then balanced sampling, adjustment for non-response by reweighting and
calibration (Strategy 3) gives the highest accuracy.
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SUBALANSUOTO ĖMIMO TAIKYMAS, NEATSAKYMAI Į APKLAUSĄ IR
KALIBRUOTASIS ĮVERTINYS

Ieva Dirdaitė, Danutė Krapavickaitė
Santrauka Šio darbo tikslas yra modeliavimo būdu ištirti subalansuoto ėmimo, neatsakymų į apklausą ir

kalibruotojo įvertinio tarpusavio sąveiką. Lyginami septynių strategijų, apimančių subalansuotą ėmimą (nau-
dojant kubo metodą), paprastąjį atsitiktinį lizdinį ėmimą, atsižvelgimą į neatsakymus, Horvico ir Tompsono
įvertinio bei kalibruotojo įvertinio derinius, rezultatai. Visais atvejais bent viename iš etapų (imties ėmimo arba
parametrų vertinimo) yra naudojama papildoma informacija. Ji išreikšta indikatoriais, apibūdinančiais asmens
lytį, amžių, gyvenamąją vietą, ir šių indikatorių sumomis. Modeliuoti naudojami realūs Lietuvos statistikos de-
partamento 2011 m. gyventojų užimtumo statistinio tyrimo duomenys. Įvertinio poslinkis, dispersija, santykinė
vidutinė kvadratinė paklaida yra tikslumo matai, taikomi įverčiams palyginti.

Reikšminiai žodžiai: papildoma informacija, atsižvelgimas į neatsakymus, kubo metodas, modeliavimas.
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