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Abstract. Sample and population auxiliary information have been demonstrated to be useful and yield approximately equal results
in large samples. Several functional forms of weights are suggested in the literature. This paper studies the properties of calibration
estimators when the functional form of response probability is assumed to be known. The focus is on the difference between popula-
tion and sample level auxiliary information, the latter being demonstrated to be more appropriate for estimating the coefficients in the
response probability model. Results also suggest a two-step procedure, using sample information for model coefficient estimation in
the first step and calibration estimation of the study variable total in the second step.
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1. Introduction

Weighting is widely applied in surveys to adjust for nonresponse and correct other nonsampling errors.
The literature contains many different proposals for nonresponse weighting methods. These methods
usually treat the set of respondents as a second-phase sample [2], the elements of the response set
being tied to a twofold weight compensating for both sampling and nonresponse. These weights, in
particular those for nonresponse adjustment, are constructed with the aid of auxiliary information.

Treating the response set as a random subset of the sample set justifies associating each respondent
with a probability of being included in the response set. Estimating this probability with aid the of
auxiliary information and multiplying it by the sample inclusion probability gives an estimate of the
probability of having a unit in the response set. The observations of target variable values are weighted
by the reciprocals of these estimated probabilities and summed over the set of respondents, giving an
estimated population total. This is known as direct nonresponse weighting adjustment [13]. One
example of this method is the cell weighting approach described by [11].

Alternatively, the auxiliary information is incorporated into the estimation such that the second-
phase weight adjustments are determined implicitly. Such estimators are known as nonresponse weight-
ing adjustments (see [12]), and one example is the calibration method suggested by [18]. [5] combine
the two approaches. They assume the response probability function to be known, and calibration
serves as the means of estimating the parameters of this function. Once the parameters have been
determined, the inverse of the estimated response probabilities are used as nonresponse adjustment
factors.

The main feature of the calibration approach is to make the best use of available auxiliary infor-
mation. When the response mechanism is assumed to be known and of the form p(·;g), parameter g
is deemed a nuisance parameter [14]; this means that, although the information associated with its
estimator ĝ is important, the primary objective is to estimate the target, say, the total Y = ∑U yk.
Using calibration to estimate the unknown parameters confers a different meaning on the estimation
problem, in the sense that auxiliary variables are selected to provide good auxiliary information for
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estimating the parameters with good precision. This will in turn imply good precision for the estimates
of response probabilities. Thus, when the response probability function is known, our principle is to
view the problem of estimation in two distinct moments: estimation of parameters and estimation of
targets respectively.

As noted in [4], the probabilities to respond are usually functions of the sample and survey condi-
tions, that is, the response probability for a specific individual may change when the survey conditions
also well change (see also [3]). However, the mechanism leading to response/nonresponse for a sampled
individual is generally not known [14]. Thus, estimation in the presence of nonresponse requires some
kind of modeling, explicitly or implicitly (see [5]). An implicit modeling for nonresponse adjustment
can be found in [1], while [12] gives an example of explicit modeling. This paper considers nonre-
sponse adjustment methods when the response probability function is assumed to be known up to a
set of unknown coefficients. Under this assumption, direct weighting estimators can be used when
the response probability model is estimated using, for example, the maximum likelihood estimator.
An alternative here is to estimate the response probability model using calibration, as suggested by
[5]. This calibration estimator requires only the values of the covariates in the response model for the
sample units in the response set, while maximum likelihood needs the values of those variables for the
whole sample. One issue considered is the level of information used in calibration. An option is to
use either sample or population level information when calibrating for response probability coefficient
estimates. This paper contributes by demonstrating that the asymptotic variance of the coefficient
estimator is smaller when sample level information is used. A simulation study is performed in order
to investigate the properties of the estimators for small sample sizes. We also suggest a two-step pro-
cedure in which sample level information is used for response probability model estimation in the first
step, and population level information is used for estimating population characteristics in the second
step. Furthermore, the importance of correlating auxiliary variables with model and study variables
is addressed.

The simulation study performed is based on data from a survey on real estate, and the bias and
variance properties of the estimators are considered. Several estimators are studied, including the
Horvitz-Thompson (HT) estimator using true model coefficients, direct weighting using maximum
likelihood (ML) estimates of coefficients, and calibration-estimated coefficients, where calibration uses
sample or population information. Two-step estimators using ML-estimated and calibration-estimated
coefficients, respectively, are included, as is the linear calibration (LC) estimator [21].

The estimators studied are introduced in the next section. Section 3 compares the variance of the
model parameter calibration estimators when based on population and sample level information. The
results of a simulation study are reported in Section 4, and a discussion of the findings is saved for
the final section.

2. Estimators under nonresponse

Sample s of size n is drawn from the population U = {1,2, ...,k, ...,N} of size N using a probability
sampling design, p(s), yielding first and second order inclusion probabilities πk = Pr(k ∈ s) > 0 and
πkl = Pr(k, l ∈ s)> 0, respectively, for all k, l ∈U . Let r ⊂ s denote the response set. Units in the sam-
ple respond independently with a probability pk = Pr(k ∈ r |k ∈ s)>0, for the known functional form
pk = p(zt

kg) evaluated at g = g∞, an interior point of the parameter space g ∈ G, and zk is a vector
of model variables. Both g and zk are column vectors of dimension K. Furthermore, we assume that
conditional on the auxiliary variables, the response probability is independent of the survey variable
of interest, which is known as MAR assumption (e.g. [23]). Define the indicators:

Ik =

{
1 i f k ∈ s
0 else

and Rk =

{
1 i f k ∈ r|Ik = 1
0 i f k /∈ r|Ik = 1

.

The survey variable of interest is y, and its population total, Y = ∑U yk, is to be estimated. We can
then construct an estimator for Y of the form:

ŶW = ∑
r

wkyk. (1)
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The weights, wk, can be defined in various ways but usually have the form wk = dkvk, where dk = 1/πk
is the design weight and vk is a factor adjusting for example, for nonresponse. These factors make use
of auxiliary information. The auxiliary vector is xk, with dimension P×1, where P≥ K and X = ∑U xk
denotes its population total.

a. Direct nonresponse weighting adjustment

One alternative of weights wk in (1) is given by wk = dkh(zt
kĝ), where h(·) = p−1(·) and ĝ is an estimator

of g∞. Assume p(zt
kg) to be differentiable w.r.t. g and define the weighted log likelihood function of

the response distribution

l(g) = ∑
s

dk
[
Rkln

(
p(zt

kg)
)
+(1−Rk)ln

(
1− p(zt

kg)
)]
. (2)

The first order conditions for the maximum likelihood estimator (MLE) are given by

∂l(g)
∂g

= ∑
s

dk

(
Rk− p(zt

kg)
p(zt

kg)(1− p(zt
kg))
·

∂p(zt
kg)

∂g

)
= 0. (3)

The first order conditions in (3) are nonlinear in g in general, and a numerical optimization method,
such as the Newton-Raphson algorithm, is required to obtain the desired ĝML. Observe that ∂l(g)

∂g
results in a K-dimensional column vector of partial derivatives, each with respect to one component
of g. For matrix derivations, see [19].

With a calculated ĝML, the estimator (1) takes the form

ŶDN−ML = ∑
r

dkh(zt
kĝML)yk (4)

where the subscript (DN_ML) stands for direct nonresponse weighting by ML. This estimator is
asymptotically unbiased for the population total Y under the assumptions established for Theorem 1
by [13].

b. The propensity score calibration estimation

[5] propose a calibration direct nonresponse adjusted estimator (1), where the weights wk are the
products of the design weight and the reciprocal of the estimated response probability p(zt

kĝCAL) for
the element k in r, i.e., wk = dkh(zt

kĝCAL), so that the estimator (1) becomes

ŶW = ∑
r

dkh(zt
kĝCAL)yk. (5)

This estimator is similar to (4) in form but makes use of calibration for the estimation of g∞ instead
of ML. The strategy is to estimate g∞ using the solution to the calibration equation

X = ∑
r

dkh(zt
kg)xk (6)

Assuming h(zt
kg) to be twice differentiable, [5] suggest an estimator defined by minimizing an objec-

tive function derived from (6), assuming the difference e = X−∑r dkh(zt
kg∞)xk to be asymptotically

normal distributed. Here, we do not impose normality assumption and derive their estimator slightly
differently.

Assume that P≥ K and define the distance function as

d(g) =

(
X−∑

U
IkdkRkh(zt

kg)xk

)
(7)

Let Σn be a P×P symmetric nonnegative definite matrix converging in probability to the positive
definite matrix Σ, when the sample size grows arbitrarily large. Construct a weighted quadratic
distance as follows:

D(g) = 2−1dt(g)Σnd(g) (8)
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Then, the [5] estimator of g∞ is defined as the minimizer of (8). Note that this estimator is a generalized
method of moments (GMM) estimator, where minimizing (8) entails solving the estimating equations
([7], p. 378)

dt(g)Σnd(g) = 0 (9)

that results in the equation
ĝc1 = ĝc0− (dt(ĝc0)Σnd(ĝc0))

−1dt(ĝc0)Σnd(ĝ0) (10)

after an initial guess ĝc0
where,

d(g) =−∂d(g)
∂g

= ∑
U

IkdkRkh̃(zt
kg)xkzt

k (11)

h̃(a) is the first derivative of h(a) and d(g) is assumed to be of full rank. Section 3 provides some
details in the derivation of (10).

The [5] propensity calibration estimator is obtained upon the convergence of (10) and is given by:

ŶPS = ∑
r

dkh(zt
kĝc1)yk (12)

c. The linear calibration estimator
The LC estimator is defined as the estimator (1) with the weights, wk, satisfying the calibration
constraint

∑
r

wkxk = X (13)

where wk = dkvk, vk = 1+λ
t
rzk, and zk is a variable vector with the same dimension as xk. zk is assumed

known at least up to the set of respondents and is called an instrument vector if it differs from xk.
This system yields the vector λ

t
r = (X−∑r dkxk)

t (
∑r dkzkxt

k

)−1. The linear calibration estimator for the
total Y is then given by

ŶLC = ∑
r

dkvkyk = ∑
r

wkyk (14)

In this setting, no explicit modeling for response or outcome is required. Instead, the method relies
on the strength of the available auxiliary information. Although this is not the basic tenet, the vk
factor gives the impression of a linear approximation of the reciprocal of the response probability in
the sense that a good linear approximation of h(zt

kg) brings about a linear calibration estimator with
good statistical properties (see [15]).

d. The two-step calibration estimator
[21] describe the two-step calibration approach. The first- and second-step weights are constructed
according to the principle of combining population and sample levels auxiliary information. In the
first step, sample level information is used to construct preliminary weights, w1k, such that ∑r w1kxs

k =

∑s dkxs
k, where xs

k is a J-dimensional column vector of auxiliary variables with known values for all
sampled units. In the second step, weights w1k replace the design weights in the derivation of the
single step calibration estimator (14), and the final weights, wk, satisfy ∑r wkxk = X. Here, X = ∑U xU

k if

xk = xU
k or X =

(
∑U xU

k
∑s dkxs

k

)
if xk =

(
xU

k
xs

k

)
, with xU

k being a P-dimensional column vector of auxiliary

variables with known values for all respondents; moreover, their population totals are also known.
[16] also suggest a two-step calibration estimation assuming the known functional form of the

response mechanism. The estimation process is conceptually different from the one suggested in [21],
where the second-step weights are based on the first-step weights. The prediction approach supports
the estimation setting suggested by [16].

Here, the concept of two-step estimation is implemented differently to ([21], p. 88). As in [16], we
assume a specified response mechanism, p(zt

kg), where initial weights are calculated as w1k = dkh(zt
kĝ)

after calculating ĝ. Depending on whether the auxiliary vector zk is known up to the response set or
the sample gives different options for the estimators of the true value of g. For example, if zk is known
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up to the sample level, then ĝ may be the MLE. If zk is known only up to the response set level, ĝ is
estimated using calibration against sample level information, i.e., ∑s dkxk = ∑r dkh(zt

kg)xk.

In the second step, the population auxiliary data are employed for estimating targets. That is, the sec-
ond step weights, wk, are given by wk =w1kvk with vk = 1+λ

t
2xk and λ

t
2 = (X−∑r w1kxk)

t (
∑r w1kxkxt

k

)−1.

3. Asymptotic variance of the estimated response model parameters

[12] and [13] provide analytical and empirical justification for the efficiency gain when using estimated
response probabilities in place of the true response probabilities, proving what had been noted by
[20], namely, the estimated probabilities outperform true probabilities. [12] and [13] demonstrate this
feature in a context of direct and regression adjustments where the scores are estimated using an ML
procedure. This efficiency gain by using estimated probabilities can be interpreted as resulting from
the lack of the location-invariance property of the HT estimator (e.g. [9], p. 10). Using true response
probabilities, observations are given weights equal to the reciprocal of the probability of having the
unit in the response set. However, the size of the response set is random due to nonresponse, meaning
that it is not location invariant. When using ML-estimated response probabilities, estimates satisfy
moment conditions at the sample level. This can be expected to reduce variance but will not in general
yield an invariance property.

Similar to the difference between true and estimated response probabilities, the difference between
population and sample level information in the calibration estimator is considered. The precision of
model parameters can be expected to affect the precision of target variable estimates. Here precision
is auxiliary information dependent. As noted in [4] and [24], the strength of the relationships between
the auxiliary variables and the response probabilities or study variables is crucial for the efficient
performance of the weighting adjustment methods. Auxiliary information may be available at different
levels, such as the population or sample levels [8]. Under nonresponse, this auxiliary information is
used for correcting nonresponse bias and reducing the variance of the estimator. In particular, as [23]
states, sample level information is suited for nonresponse adjustment rather than variance reduction,
because nonresponse affects only the location of means and not their variation.

According to the quasi-randomization setup, response set generation is an experiment made con-
ditional on the sample. On the other hand, calibrating weights against population level information
means that estimation is made unconditional on the sample. Calibration based on sample level infor-
mation is therefore expected to yield more efficient estimators of response probability parameters.

Reformulating the calibration equation as

X−∑
r

wkxk =

(
X−∑

s
dkxk

)
+

(
∑

s
dkxk−∑

r
wkxk

)
,

illustrates that calibration against population level information brings a source of uncertainty that
does not depend on the response probability distribution, i.e., variation due to the first phase sampling
represented by the first term of the right-hand side of this equation. Calibrating against sample level
information excludes this term, and the single source of randomness involved is the one defined by the
conditional response distribution.

For more formal results, assume the asymptotic framework in which both the sample and pop-
ulation sizes are to increase to infinity (see, [10]), and assume further that the minimizer of (8) is
consistent.

Using result 9.3.1 in [22], the covariance matrix of d(g) evaluated at the true value g = g∞ is given
by

E
(
d(g∞)dt(g∞)

)
= Π1+Π2 =Π (15)

where, E(d(g∞)) = 0, Π1 = ∑k∈U ∑l∈U
πkl−πkπl

πkπl
xkxt

l and Π2 = ∑U
(h(zt

kg∞)−1)
πk

xkxt
k, with the expectations

being taken jointly with respect to the sampling design p(s) and the response distribution p(zt
kg).
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Consider equation (9) with g replaced by its solution ĝ, and apply the mean value theorem to
decompose d(ĝ), obtaining the following equation:

d(ĝ) = d(g∞)+d(ḡ)(ĝ−g∞) . (16)

Then, we can substitute d(ĝ) in (9) by the r.h.s of (16) and get:

dt(ĝ)Σd(g∞)+dt(ĝ)Σd(ḡ)(ĝ−g∞) = 0 (17)

where, ḡ lies in the segment between ĝ and g∞.
We can rewrite (17) as:

(ĝ−g∞) =−
(
n−1dt(ĝ)Σnn−1d(ḡ)

)−1
n−1dt(ĝ)Σn

(
n−1d(g∞)

)
(18)

Under appropriate assumptions, we have that d(ĝ)−d(g∞) = op(1). Let, D = plimn→∞n−1d(a), where
a stands for ĝ, ḡ or g∞. We replace d in (17) by its corresponding limit and obtain the asymptotic
variance of the estimated model parameters as:

Avar (
√

n(g∞− ĝ)) = Avar
(
[DtΣD]−1 DtΣ

√
n(n−1d(g∞))

)
= [DtΣD]−1 DtΣΠΣD [DtΣD]−1

(19)

where Π is the probability limit of n−1E (d(g∞)dt(g∞)).
The choice of Σ = Π

−1 yields

Avar
(√

n(ĝ−g∞)
)
=
[
Dt

Π
−1D

]−1
(20)

which is equivalent to expression (9.80) in [7]. Observe that equation (10) results from (17) after
replacing d(a) with the computable entity d(ĝc0) = ∑r dkh(zt

kĝc0)xk.
Now, for calibration at the sample level, rewrite equation (7) as

ds(g) =
(

∑
s

dkxk−∑
s

dkRkh(zt
kg)xk

)
. (21)

The conditional expectation of ds(g∞) with respect to the response distribution is zero. This implies
that the covariance (15) in this case is Π2 = ∑U

(h(zt
kg∞)−1)
πk

xkxt
k, since Π1 = 0. Then, with arguments

similar to those that led to (20) results in asymptotic variance of the response model parameters given
by

Avar
(√

n(ĝs−g∞)
)
=
[
Dt

Π
−1
2 D

]−1
. (22)

The additional asymptotic variance introduced by calibrating against population level instead of sam-
ple level information is expressed by the difference[

Dt (Π1 +Π2)
−1 D

]−1
−
[
Dt

Π
−1
2 D

]−1
> 0 (23)

The positive definiteness of the difference (23) is illustrated by the positive definiteness of the difference[
DtΠ−1

2 D
]
−
[
Dt (Π1 +Π2)

−1 D
]
> 0 (see [6]). This is equivalent to demonstrating that

Π
−1
2 − (Π1 +Π2)

−1 > 0 (24)

because Π1 and Π2 are both positive definite matrices, unless h(zt
kg∞) = 1 for all elements in the

population, and D is a full rank matrix as a consequence of (11). Observe that proving (24) is in turn
equivalent to demonstrating that (Π1 +Π2)−Π2 > 0. Thus, inequality (23) follows.
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4. Simulation study

Under assessment are the estimators described in points “a” to “d”: the direct nonresponse weighting
adjustment (a), the propensity score calibration estimator (b), the linear calibration estimator (c),
and the two-step calibration estimator (d). We used data from a real case study with 4228 sampled
elements, of which 1783 were nonrespondents. A two-covariate logistic regression was fitted based
on this data and used as the true response probability model in the simulations. Next, we created
a synthetic population based on the 2445 respondents to the survey; samples were drawn from this
population, after which a response set was generated using the estimated response probability model.

Five variables were selected for the study, one categorical and the others numerical. The nu-
merical variables were transformed into logarithmic scales to reduce variability. The categorical
variable, denoted γ, was a stratum indicator in the original study having six strata, thus, γk =
(γ1k,γ2k,γ3k,γ4k,γ5k,γ6k), where γik = 1Si(k) and Si is the ith stratum. Figure 4 presents the relation-
ship among the original quantitative variables transformed into logarithmic form. One of them, left
untransformed, was chosen to be study variable y, and estimation concerns estimating the population
total Y = 17014, having the three auxiliary variables v1, v2, and v3.

Figure 1: Pairwise correlations among the original variables used in the simulation study. Correlations calcu-
lated on the set of synthetic population.

Two additional quantitative auxiliary variables, va and vb, were created based on the equations
va =

√
(v2

2 + v2
1)/v3

3 and vb = 5
√

v6
1/v2. The variables were created in an attempt to control for the

strength of the relationship between the auxiliary variables, the study variable, and the model variables
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in the response probability function. These new variables give correlation relationships not covered
by the original auxiliary variables. Figure 4 shows plots of the new variables.

Figure 2: Pairwise correlations among artificial and original variables. Correlations calculated on the set of
synthetic population.

Three simulation sets were defined using three criteria. The first criterion addresses the estima-
tor’s performance in relation to the quality of auxiliary variables, the second criterion addresses the
effect of the sample size, and the last focuses on the effects of model misspecification. The response
probability function is defined by the logistic regression model p(Rk = 1|k ∈ s) = 1/

(
1+ exp(−zt

kg)
)
,

where zk = (1,v1k)
t and the parameter values are defined by their ML fit to the original 4228 obser-

vations. The samples were selected using simple random sampling without replacement followed by
Poisson sampling, in which the probability used for each Bernoulli trial was the one obtained using
the response model. Each simulation result was based on 1000 replications. Initial trials with higher
numbers of replications produced similar results. All estimators under study used the same samples
and same response sets. The expected response rate was approximately 57%. The estimators are
evaluated in terms of the relative bias (RB), standard error (SE) and mean squared error (MSE).

4.1. Simulation results

4.1.1 Correctly specified response probability model

Tables 1 – 3 present the results with the model vector defined as zk = (1,v1k)
t . In Table 1, the

auxiliary vector is defined as xk = (γ1k, ...,γ6k,γ1kv2k, ...,γ6kv2k)
t , a setup treated as the base case. As
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seen in Figure 4, the auxiliary variable, v2, correlates well with both the model variable and the study
variable. A similar auxiliary vector was defined for the results in Table 2, with the exception that v3
replaces v2, that is, xk = (γ1k, ...,γ6k,γ1kv3k, ...,γ6kv3k)

t . Here the auxiliary variable has a moderate level
of correlation with the study variable, but carries much less information on the variation of the model
variable in the response probability function. The correlations of v3 with v1 is approximately 0.16,
with y approximately 0.59.

Again a similar auxiliary vector as in Table 1 was used for the results in Table 3, but here va is
used in place of v2, i.e. xk = (γ1k, ...,γ6k,γ1kvak, ...,γ6kvak)

t . The auxiliary variable va has approximately
moderate correlation with the model variable (0.45) but low correlation with the study variable (0.04).
The purpose of the simulation setup in tables 1 – 3 is partly to enable the study of the differences in
the effect of having a good auxiliary variable for the model variable and the study variable respectively.

Table 1: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.258,-0.158) (0.462,0.013) 45,771 214 -0.014
ŶPS_pop (1.150,-0.137) (2.640,0.077) 51,201 226 -0.042
ŶPS_samp (1.168,-0.142) (1.220,0.035) 50,708 225 -0.053
Ŷ2stepML – – 24,495 155 -0.137
Ŷ2stepA – – 24,727 155 -0.166
Ŷ2stepB – – 39,566 196 -0.196
ŶLC – – 191,835 438 -0.113

Table 2: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v3kγk)
t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.258,-0.158) (0.462,0.013) 45,771 214 -0.014
ŶPS_pop (1.048,-0.106) (8.439,0.247) 185,033 430 0.090
ŶPS_samp (0.952,-0.099) (3.665,0.106) 112,337 334 -0.160
Ŷ2stepML – – 33,240 179 -0.192
Ŷ2stepA – – 36,517 177 -0.429
Ŷ2stepB – – 45,422 205 -0.342
ŶLC – – 14.09×108 11872 -0.599

In tables 1 – 3, one can observe that the use of true probabilities (ŶDNTrue) leads to estimated targets
with larger variability than that of the estimated targets obtained using ML-estimated probabilities
(ŶDN_ML). Observe that the standard error when using true probabilities is 872, which is four times
more than the standard error when using estimated probabilities. Note that the results for these two
estimators are the same over all three tables, because they are not defined by the benchmark variables
used.

As predicted by the results in Section 3, the variance for the calibration estimator of the model
coefficients is smaller when sample level information is used rather than population level information.
This is observed in all three tables. Also, as expected, the ML estimator is associated with the
smallest variance estimates, except the two-step estimators. The results also indicate that the variance
decreases with increased correlation between the model and auxiliary variables; the variance estimates
are the highest in Table 2. However, the comparison of tables 1 and 3 indicates that the correlation
is not the only determinant of variance.
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Table 3: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,vakγk)
t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.258,-0.158) (0.462,0.013) 45,771 214 -0.014
ŶPS_pop (1.392,-0.179) (2.206,0.063) 78,540 277 0.231
ŶPS_samp (1.318,-0.167) (1.078,0.031) 69,218 262 0.125
Ŷ2stepML – – 30,087 173 - 0.083
Ŷ2stepA – – 30,139 173 -0.065
Ŷ2stepB – – 43,848 209 -0.029
ŶLC – – 2.4×107 4870 -1.343

A comparison between population and sample based propensity calibrations for population totals,
that is, ŶPS_pop and ŶPS_samp, indicates that under the definition of benchmark and model auxiliary
information given in Table 1, these estimators perform rather similarly. The SE and RB are 226 and
-0.042%, respectively, for the population-based calibration and 225 and -0.053%, respectively, for the
sample-based calibration. In Table 2, however, the population-calibrated estimator displays larger
variability. The SE and RB are 429 and 0.09%, respectively, for the population-calibrated estimator
and 334 and -0.16%, respectively, for the sample-calibrated estimator. The same observation is made
in Table 3, although the difference is smaller, i.e., 277 and 0.231% versus 262 and 0.125%.

The direct estimator based on model coefficients estimated by ML (ŶDN_ML) provides better results
than do the single-step calibration estimators based on sample or population auxiliary information.
In tables 1 – 3, the ML based estimator exhibits an SE of 214 and an RB of -0.014%.

The proposed two-step estimators provide much smaller SE and MSE estimates than do the single-
step estimators. In some cases, the RB estimates are slightly larger. Estimators Ŷ2stepML (two-step
with ML-estimated coefficients) and Ŷ2stepA (two-step with sample calibration-estimated coefficients),
produce very similar results, with slightly smaller MSE and SE estimates for the estimator using
ML-estimated model coefficients.

Finally, it is interesting to compare the effects of using different benchmark variables on the proper-
ties of the calibration-based estimators. Overall, the smallest MSE and SE estimates of the population
total estimators are observed in Table 1, where the benchmark variable correlates moderately with
both the study and the model variable. Table 2 contains the largest MSE and SE estimates observed
among the three tables. The difference in the results of the Ŷ2stepML estimator between tables 2 and
3 is interesting. The estimator uses the same coefficient estimates but different benchmark variables,
resulting in smaller MSE in Table 3.

Results are also provided for the linear calibration estimator. In all three tables, this estimator
is the most penalized under the presented choices of auxiliary information. The auxiliary variables
definition in Table 1 provides better results than do the definitions in Tables 2 and 3, the definition
in Table 2 proving to be the worst of the three.

The results presented in tables 4 – 6 concern simulations based on the same setup as presented in
Table 1, i.e., zk = (1,v1k)

t and xk = (γ1k, ...,γ6k,γ1kv2k, ...,γ6kv2k)
t , except that the sample sizes differ. In

Table 4, the ordinary sample size of 300 was reduced by approximately 40%, while in tables 5 and 6
the sample was increased by approximately 100% and 400% respectively.

The results presented in the tables 4 – 6 indicate an increase and a decrease in the standard
errors of the estimated targets in line with a decrease and an increase in the sample size. The
standard picture in Table 1 prevails under all three sample sizes, i.e. sample calibration leads to
smaller variance in model coefficient estimates than does the population calibration, while ML yields
the overall smallest variance estimates. The sample-calibrated estimator, ŶPS_samp, yields smaller SE
and MSE estimates than does the population-calibrated estimator, ŶPS_pop. In turn, ŶDN_ML yields the
smallest SE and MSE estimates of these three estimators. In addition, the two-step estimators Ŷ2stepML

and Ŷ2stepA produce smaller SE and MSE estimates than do the other estimators. Interestingly, the
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Table 4: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=185

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.271,-0.160) (0.855,0.024) 75,694 275 -0.110
ŶPS_pop (1.142,-0.132) (4.914,0.143) 105,707 325 -0.059
ŶPS_samp (1.157,-0.138) (2.302,0.067) 91,838 303 -0.110
Ŷ2stepML – – 45,545 207 -0.309
Ŷ2stepA – – 46,257 207 -0.344
ŶLC – – 760,742 865 -0.635

Table 5: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=600

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.268,-0.161) (0.240,0.007) 22,552 150 -0.060
ŶPS_pop (1.214,-0.150) (1.188,0.034) 28,028 167 -0.060
ŶPS_samp (1.206,-0.150) (0.581,0.017) 23,659 153 -0.099
Ŷ2stepML – – 10,889 102 -0.136
Ŷ2stepA – – 11,043 102 -0.157
ŶLC – – 21,480 146 -0.065

Table 6: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=1200

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.229,-0.154) (0.125,0.004) 8246 91 -0.016
ŶPS_pop (1.197,-0.148) (0.417,0.012) 8939 94 -0.033
ŶPS_samp (1.212,-0.151) (0.273,0.008) 8638 93 -0.022
Ŷ2stepML – – 4288 65 -0.042
Ŷ2stepA – – 4270 65 -0.035
ŶLC – – 6750 82 -0.010

linear calibration estimator displays improved properties with an increased sample size. This indicates
that the estimator is competitive with the direct ML or calibration weighting.

4.1.2 Misspecified response probability model

The results in tables 7 and 8 are based on simulations with the erroneous model vector, zk = (1,v3k)
t ,

and the auxiliary vectors, xk = (γ1k, ...,γ6k,γ1kv2k, ...,γ6kv2k)
t and xk = (γ1k, ...,γ6k,γ1kvbk, ...,γ6kvbk)

t , re-
spectively. The true model variable, v1, and the specified model variable, v3, have a correlation of
approximately 0.16. Table 7 shows the results when the model variable is misspecified while the aux-
iliary variable is moderately correlated with the study variable and weakly correlated with the model
variable. Table 8 presents the results when the auxiliary variable does not correlate well with either
the study or the model variables (see 4).

The results presented in tables 7 and 8 indicate an increase in bias, compared with results in
Table 1. In terms of SE, the levels are roughly the same in tables 7 and 8 as in Table 1, with the
exceptions of the two-step estimators in Table 8. The MSEs for these estimators are larger in tables
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Table 7: Simulated estimates of RB, SE and MSE for the total of the survey variable
in case of a true response function and erroneous model variable, that is zk = (1,v3k)

t ,
xk = (γk,v2kγk)

t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (0.521,-0.085) (0.692,0.141) 57,791 211 -0.678
ŶPS_pop (0.437,-0.043) (2.359,0.496) 55,056 204 -0.680
ŶPS_samp (0.469,-0.060) (0.958,0.196) 61,322 218 -0.692
Ŷ2stepML – – 28,133 156 -0.367
Ŷ2stepA – – 28,255 155 -0.376
ŶLC – – 66×108 81,350 -3.222

Table 8: Simulated estimates of RB, SE and MSE for the total of the survey variable
in case of an erroneous model and weak auxiliary variables, i.e., zk = (1,v3k)

t , xk =
(γk,vbkγk)

t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (0.521,-0.085) (0.692,0.141) 57,791 211 -0.678
ŶPS_pop (0.599,-0.115) (1.914,0.397) 57,791 206 -0.648
ŶPS_samp (0.609,-0.124) (0.934,0.190) 57,223 216 -0,602
Ŷ2stepML – – 47,261 197 -0.537
Ŷ2stepA – – 47,041 197 -0.528
ŶLC – – 3.01×108 17,348 -1.169

7 and 8 than in Table 1. For the direct calibration estimators, the relationship between sample and
population level information is reversed, compared with that presented in Table 1. The population
level calibrated estimator yields smaller SE and MSE estimates in tables 7 and 8. Still, the two-step
calibration estimators provide the smallest SE and MSE estimates. These are also associated with the
smallest bias estimates.

In Table 9, estimation is carried out as in Table 1, but the true response probability model is
the exponential model p(Rk = 1|k ∈ s) =

[
1− exp(−zt

kg)
]
. The coefficient vector was defined to be

gt = (0.185, 0.08). The coefficients were chosen so that the response probabilities are within the same
range as in Table 1.

Table 9: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a misspecified response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=300.

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDN_ML (-1.061,0.166) (0.472,0.014) 52,640 229 -0.014
ŶPS_pop (-1.125,0.180) (2.374,0.072) 56,865 238 0.059
ŶPS_samp (-1.105,0.175) (1.278,0.039) 58,189 241 0.027
Ŷ2stepML – – 29,164 170 -0.116
Ŷ2stepA – – 29,343 170 -0.131

As a result of this setup, model coefficient estimators are inconsistent, as illustrated by the results
in Table 9. For the estimators of the population total, the results in Table 9 are not very different
from the ones presented in Table 1. The SE and MSE estimates for the ML-based direct weighting
estimator are larger, but still the smallest estimated SE and MSE for the direct weighting estimators.
In addition, as observed in tables 7 and 8, calibration using population level information yields smaller
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SE and MSE estimates than does calibration using sample level information. As previously observed
in all tables, the two-step calibration estimators have the smallest SE and MSE estimates.

5. Discussion

Simulation results are consistent with the principle that estimated probabilities outperform true prob-
abilities in weighting for nonresponse, as was earlier known for ML-estimated probabilities (see [13]).
The results presented here suggest that the gain in using estimated probabilities also holds for alterna-
tive model parameter estimators. This somewhat surprising principle is here interpreted as due to the
random response set size whereby the HT estimator is not location invariant. The results presented
also suggest that the gain in using estimated probabilities holds for alternative model parameters. In
fact, even under the considered misspecifications of the response probability model, the results indicate
the improved performance of the weighting estimators using estimated response probabilities.

The major concern in the paper is the use of sample or population level auxiliary information in
the calibration of the response probability function. The simulation results obtained are consistent
with the formal asymptotic argument presented, suggesting the use of sample auxiliary information for
estimating the response probability function. Results indicate that the response function parameters
are estimated with lower variance when using sample auxiliary information instead of population
level information. The importance of having auxiliary information highly correlated with the model
variables is observed for both levels of auxiliary information.

Using sample or population level information in the calibration estimators of population totals
produces similar relative biases and standard errors. However, the sample-based calibration estimator
has a smaller MSE than does the population counterpart; this is observed in all cases when the model
is correctly specified. However, ML-estimated probabilities yield an estimator with the smallest SE
and MSE estimates.

The auxiliary vector used in Table 2 is moderately correlated with the study variable while having
virtually no relationship with the model variable; the standard errors for the single step calibration
estimators are greater than when the auxiliary variable is correlated with both the study and model
variables (Table 1). A much smaller difference is observed when auxiliary variables are correlated with
the model variable while having virtually no correlation with the study variable (Table 3). This sug-
gests a preference for auxiliary variables related to response propensity model variables over auxiliary
variables related to the study variable.

Response probability function modelling is susceptible to misspecification. Under the erroneous
choice of model variables, the major effects observed here are on the bias of the propensity based-
estimators. The estimators (i.e., ŶDN_ML,ŶPS_pop and ŶPS_samp) are associated with larger biases, al-
though still at a low relative level (tables 7 and 8). The major observation is that the population-based
calibrated estimator is more effective in error protection than is either the sample-calibrated or ML-
based estimator. Still, good auxiliary information is important for the model variables. Although the
evidence presented suggests that using sample auxiliary information is superior to using population
auxiliary information in propensity calibration estimators, the population level propensity calibration
is suggested to be the best alternative for reducing the MSE of the target estimates when the model
is misspecified.

An erroneous functional form of the response probability model does not have a great impact on
the estimator performance, according to the results in Table 9. One likely reason for this is that
the two models are similar. However, the results suggest that the choice of the functional form is
less important than is having the right model variables. This is partly supported by the competitive
performance of the linear calibration estimator at larger sample sizes.

We suggest that estimation be performed in two steps; in the first step, the sample auxiliary data
are used in the propensity calibration for estimating the response probabilities; in the second step,
the products of the design weights and the reciprocals of response probabilities replace the design
weights in the linear calibration estimator. The two-step estimation is to be performed using sample
auxiliary information for estimating the response model through calibration, followed by the use of
population auxiliary information for estimating target entities. This will generally produce more
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efficient estimates.
The results presented all favor the suggested two-step calibration estimators. In some cases, these

estimators are associated with larger bias, thought their relative sizes are small. In terms of MSE, the
two-step estimators outperform other estimators. This is also observed when the response probability
model is misspecified. A general suggestion would be to use ML to estimate model parameters in the
first step, if model variables are available at the sample level. If the model variables are available only
at the response set level, the [5] calibration estimator for model parameters is almost equally good.
The results of the two-step estimators are of particular interest since response probability functions
used in practice are models susceptible to misspecification. The effects of misspecification are usually
unknown and can yield an adjusted estimator with a larger bias than the unadjusted one, depending on
correlation structures among the study variable, response probability and auxiliary variables ([17]).
Although small, a second calibration step reduces bias estimates in cases with a wrong auxiliary
variable in the response probability model (tables 7 and 8).A question for further studies is whether
a second step calibration can protect against the misspecification of the response probability function
and/or if indicators of misspecification can be developed.

With large sample sizes and carefully chosen auxiliary information, the linear calibration estimator
is fairly competitive with the propensity-based estimators. The linear calibration estimator is known
to have good properties when good auxiliary information is available. On the other hand, poorly
defined auxiliary variables may lead to negative and/or very large weights in the linear calibration
([21], remark 6.1). These problems may result in very inefficient estimates.A conclusion based on the
results presented in Table 1 is that the properties of the linear calibration estimator can be improved by
using efficient initial weights. These weights can be derived from a sample-based propensity calibration
estimator. The combined approaches produce more efficient estimates.

Tables 1 – 3 provide results for, Ŷ2stepB, an estimator not discussed here. It is a version of Ŷ2stepA

in which auxiliary information exists only at the sample level, i.e. sample level information is used in
both steps. This will generally provide slightly better RB, but the SE and MSE are higher than those
provided by Ŷ2stepA.

5.1. Limitations

In this article, we use an estimation setting in which only positive correlations among the variables in
the study are considered. [17] have noted that the direction of the correlation between the variables
involved in the study has an influence on the properties of the estimated entities. This suggests a
further investigation whether the results here are the same when the variables are negatively correlated.

References

[1] Barranco-Chamorro, I., Jiménez-Gamero, M. D, Moreno-Rebollo, J. L. and Muñoz-Pichardo, J. M. (2012). Case-
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KAI KURIŲ PERSVĖRIMO METODŲ, SKIRTŲ ATSIŽVELGTI Į
NEATSAKYMUS, PALYGINIMAS

Bernardo João Rota, Thomas Laitila

Santrauka Straipsnyje parodoma, kad imties lygio ir populiacijos lygio papildoma informacija yra naudinga
ir duoda apytiksliai vienodus rezultatus didelių imčių atveju. Literatūroje siūloma keletas funkcinių svorių for-
mų. Šiame straipsnyje nagrinėjamos kalibruotojo įvertinio savybės, laikant, kad atsakymo į apklausą tikimybės
funkcinė forma yra žinoma. Dėmesys nukreipiamas į skirtumus tarp populiacijos lygio ir imties lygio papildomos
informacijos, parodant, kad pastaroji yra tinkamesnė atsakymo tikimybės modelio koeficientams vertinti. Siū-
loma dviejų žingsnių procedūra, kurioje naudojama imties informacija modelio koeficientams vertinti pirmame
žingsnyje ir tyrimo kintamojo sumos kalibruotasis įvertinys antrajame žingsnyje.

Reikšminiai žodžiai: kalibravimas, papildomi kintamieji, atsakymo tikimybė, didžiausio tikėtinumo me-
todas.


