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Abstract. Bayes multiclass classification of spatial Gaussian data following the univer-
sal kriging model is considered. The closed-form expressions for the maximum likelihood
(ML) estimator of regression parameters and the actual error rate (AER) in terms of semi-
variograms are derived.
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1 Introduction

In the geostatistics literature, second-order properties are typically characterised us-
ing semivariograms that are defined directly by increments, rather than covariance
functions. It is known that for random fields (RFs) with finite variances, covariance
matrices are in one-to-one correspondence to semivariogram matrices and variances
(e.g. [4, Section 8.3]). That was the motivating argument for the consideration of
spatial prediction and classification problems via semivariograms. Another motivat-
ing argument for using semivariograms instead of covariances for stationary RFs is
the unbiasedness of the classical estimator of semivariograms introduced by Matheron
(e.g. [5, Section 2.2.1]).
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Problems of spatial data classification with continuously varying spatial index and
directly specified spatial correlation or semivariogram functions were investigated by
numerous authors (see, e.g. [19, 17, 1, 7]). These spatial data models are tradition-
ally called geostatistical models (see [8]). The error rates of classification of Gaussian
random field (GRF) observation via plug-in Bayes discriminant functions were ex-
plored by Ducinskas [9] for two-class case and by Ducinskas et al. [12] for multiclass
case. Spatial classification based on plug-in Bayes discriminant function for feature
observations, having elliptically contoured distributions, was explored by Batsidis
and Zografos [2] and Ducinskas and Zikariene [13]. A numerical comparison of the
performances for different spatial classification rules was performed by Berrett and
Calder [3]. However, in the papers mentioned above, primary attention was paid to
the geostatistical models with directly specified covariance functions.

We focus on the universal kriging case when several populations are specified
by different regression parameters of GRF with second-order properties expressed
in terms of semivariograms and variances. Classification rule based on the plug-in
Bayes discriminant function with inserted ML estimators of regression parameters is
explored.

In the present study, the closed-form expressions for the ML estimators of regres-
sion parameters and the actual error rate in terms of semivariograms are derived.
AER and its estimators are usually used for the classification rule performance eval-
uation (see, e.g. [16, 10]). This is a multiclass extension of two-class classification for
analogous models investigated by Ducinskas and Dreiziene [11].

This paper is organised as follows: the problem description and definitions of Bayes
discriminant function and Bayes error rate are presented in Section 2; ML estimators
of regression parameters and AER are derived in Section 3; discussion is presented in
the last section.

2 The main concepts and definitions

This study assesses the classification of spatial data considered as realisations of a
univariate RF {Z(s): s ∈ D ⊂ R2}. This category is traditionally called geostatistical
processes (see [6, Chapter 4]). The goal is to classify RF observation into one of L
predefined populations, denoted by Ω1, . . . , ΩL. We consider the linear regression
model of observation Z(s) in population Ωl of the following form:

Z(s) = x′(s)βl + ε(s),

where x′(s) = (x1(s), . . . , xq(s)) is a q × 1 vector of non-random regressors and βl is
a q × 1 vector of unknown parameters, l = 1, . . . , L, and βl ̸= βk for l ̸= k. The error
term ε(s) that comprises fine-scale measurements and other errors is assumed to be
zero-mean GRF {ε(s) : s ∈ D} with known stationary covariance function:

σ(s− t) = cov
(
ε(s), ε(t)

)
= σ2corr

(
ε(s), ε(t)

)
or semivariogram:

γ(s− t) = Var
(
ε(s)− ε(t)

)/
2 for s, t ∈ D.

We consider the universal kriging model for better interpretability and simplicity of
obtained closed-form expressions (e.g. [8]), assuming known covariance functions and
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semivariograms. Relaxing this assumption has only the price of computation time
and is relevant for analysing the real data.

Suppose the set of training locations Sn = {si ∈ D, i = 0, 1, . . . , n} is parti-
tioned into the union of L disjoint subsets, i.e. Sn =

⋃L
l=1 S

(k), where S(l) con-
tains nl locations with population labels l,

∑L
l=1 nl = n. For simplicity, arrange

the set of training locations in the following way: S(1) = {s1, s2, . . . , sn1}, S(2) =
{sn1+1, . . . , sn1+n2}, . . . , S(L) = {s∑L−1

l=1 nl+1, . . . , sn}. The location of the observa-
tion to be classified is indexed by {0}. Set S0

n = Sn ∪ {0}.
In what follows, we use the notations Z(si) = Zi, x(si) = xi, ε(si) = εi for i =

0, 1, . . . , n, σij = cov(Zi, Zj), rij = corr(Zi, Zj) for i, j = 0, 1, . . . , n, i ̸= j. Also, de-
fine n-dimensional vectors Z = (Z1, . . . , Zn)

′, ε = (ε1, . . . , εn)
′, c0 = (σ01, σ02, . . . , σ0n)

′,
r0 = (r01, r02, . . . , r0n)

′, and n × n matrices Σ = Var(Z) = (σij), i, j = 1, . . . , n and
R = (rij), i, j = 1, . . . , n. Analogously, introduce an n-dimensional vector and n× n
matrix for semivariograms γ0 = (γ01, γ02, . . . , γ0n)

′, Γ = (γij), i, j = 1, . . . , n, where
γij = Var(εi − εj)/2.

Observe that due to stationarity of error field Σ = σ2R = σ2J−Γ , with J = 1n1
′
n

and 1n denotes the n-dimensional vector of ones.
Let Σ.. = 1′nΣ

−11n and Γ .. = 1′nΓ
−11n.

Given invertibility condition of Σ by Woodbury identity (see [15]), Pistone and
Vicario [18] derived the following formulas:

Γ−1 = −Σ−1 +Σ−1JΣ−1
/(

Γ .. − 1

σ2

)
and

Σ−1 = Γ−1 + Γ−1JΓ−1
/(

Σ.. − 1

σ2

)
.

(1)

These will be intensively exploited in the present study.
Put β′ = (β′

1, . . . , β
′
L) and denote by Xl the nl × q matrix of regressors for ob-

servations from Ωl, l = 1, . . . , L. Then n× Lq design matrix of training sample Z is
specified by X =

⊕L
l=1 Xl. Thus, the training sample Z has a multivariate Gaussian

distribution Z ∼ Nn(Xβ,Σ) with Σ = σ2R.
The main objective of this paper is to classify a single observation of GRF {Z(s) :

s ∈ D ⊂ R2} at focal location s0, given the stratified training sample Z.
Then the conditional distribution of Z0, given Z = z, in Ωl, l = 1, . . . , L is

Gaussian with mean:

µ0
lz = E(Z0|Z = z;Ωl) = x′

0βl + α′
0(z −Xβ) and variance

σ2
0z = σ00 − α′

0c0 = σ2ρ0,
(2)

where α0 = Σ−1c0 and ρ0 = 1− r′0R
−1r0.

By using some matrix algebra and (1) and (2), we obtain the following formula in
terms of semivariograms:

ρ0 =
(
1− γ′

0Γ
−11n

)2/(
1− σ2Γ .. + γ′

0Γ
−1
0 γ0/σ

2
)
. (3)

Denote by π0
1 , . . . , π

0
L (

∑L
i=1 π

0
i = 1) the prior probabilities of the populations Ω1, . . . ,

ΩL, respectively, for observation at the focal location s0, given training sample Z.
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Denote the log ratio of conditional densities in populations Ωk and Ωl by

Wkl(Z0, β) =

(
Z0 −

1

2

(
µ0
kz + µ0

lz

))(
µ0
kz − µ0

lz

)/
σ2
0z + ϑ0

kl,

where ϑ0
kl = ln(π0

k/π
0
l ), which will be called pairwise discriminant functions.

Then Bayes rule classifies observation Z0, given Z = z, to the population Ωk if
Wkl(Z0, β) ⩾ 0 for l = 1, . . . , L and l ̸= k.

The squared pairwise conditional Mahalanobis distance at location s0, given Z = z,
has the form

∆2
0kl = (µ0

kz − µ0
lz)

2/σ2
0z = (x′

0∆βkl)
2/σ2ρ0,

where ∆βkl = βk − βl.
Then the misclassification probability, or Bayes error rate, for the Bayes rule

specified above has the following form (see [12])

P (β) = 1−
L∑

k=1

π0
k

∫
φ(u)H

(
u+

∆2
0kl

2
+ ϑ0

kl

)
du,

where φ(·) is the probability density distribution of standard Gaussian distribution
and H(·) is the Heaviside function.

3 Estimators of parameters and actual error rates

Recall that variation in spatial models is usually represented directly by covariance
functions or by semivariograms and this paper focuses on the latter.

With an insignificant loss of generality, we state the following assumption.
Intercept assumption. x1(s) = 1 for s ∈ D.

This assumption implies that Xd = 1n, where d = 1L
⊗

e1 with e1 denoting the
first column of the identity matrix Iq.

It is known that ML estimator of regression parameters from training sample Z
in terms of spatial covariances (correlations) hasve the explicit form

β̂ =
(
X ′Σ−1X

)−1
X ′Σ−1Z =

(
X ′R−1X

)−1
X ′R−1Z.

In the following, we derive the closed-form expression of the ML estimator for regres-
sion parameters through the semivariograms.

Lemma 1. Under the Intercept assumption, the ML estimator of regression parame-
ters from the training sample Z is

β̂ =
(
X ′Γ−1X

)−1
X ′Γ−1Z. (4)

Proof. Under Intercept assumption we obtain

X ′Σ−1X = −X ′Γ−1X − σ2X ′Γ−1JΓ−1X/a,

where a = (1− σ2Γ ..).
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Observe that(
X ′Γ−1X

)−1
X ′Γ−11n = d and X ′Σ−1 = −X ′Γ−1

(
I + σ2JΓ−1/a

)
. (5)

Based on Woodbury’s identity (see [14]), we get(
X ′Σ−1X

)−1
= −

(
X ′Γ−1X

)−1
+ σ2dd′. (6)

Consequently, from (5) and (6) follows:

(
X ′Σ−1X

)−1
X ′Σ−1 = −

(
−
(
X ′Γ−1X

)−1
+ σ2dd′

)
X ′Γ−1

(
I +

σ2JΓ−1

a

)
.

After simple matrix algebra, we complete the proof of lemma. ⊓⊔

Define the estimator of the conditional mean by:

µ̂0
lz = E(Z0|Z = z;Ωl) = x′

0β̂l + α′
0(z −Xβ̂).

By using the result of Lemma 1, we observe that α′
0(z−Xβ̂) = γ′

0Γ
−1(z−Xβ̂), then

µ̂0
lz = E(Z0|Z = z;Ωl) = x′

0β̂l + γ′
0Γ

−1(z −Xβ̂).

Then plug-in pairwise discriminant function has the form

Wkl(Z0, β̂) =

(
Z0 −

1

2

(
µ̂0
kz + µ̂0

lz

))(
µ̂0
kz − µ̂0

lz

)/
σ2
0z + ϑ0

kl,

and plug-in Bayes rule classifies observation Z0, given Z = z, to the population Ωk if
Wkl(Z0, β̂) ⩾ 0 for l = 1, . . . , L and l ̸= k.

Denote the estimated squared pairwise conditional Mahalanobis distance at loca-
tion s0, given Z = z, by

∆̂2
0kl =

(
x′
0∆β̂kl

)2
/σ2

0z,

where ∆β̂kl = β̂k − β̂l.

Lemma 2. Under the Intercept assumption and assertion of Lemma 1, the actual
error rate of plug-in Bayes rule has the following form:

P (β) = 1−
L∑

k=1

π0
k

∫
φ(u)H

(
u+

∆̂ 2
0kl

2
+ ϑ0

kl

)
du.

Proof. The conditional distribution of Wkl(Z0, β̂), given Z = z, in Ωk is normal
with mean E(Wkl(Z0, β̂)) = ∆̂ 2

0kl/2 + ϑ0
kl and variance Var(Wkl(Z0, β̂)) = ∆̂2

0kl =

(x′
0F

−β̂)2/(σ2ρ0). β̂ and ρ0 included in the above formulas for error rates have their
explicit expressions in terms of semivariograms presented in formulas (3) and (4),
respectively. Then by using the properties of normal distribution and definition, we
complete the proof of Lemma 2. ⊓⊔
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4 Discussion

This paper contributes to the analysis of the performance of plug-in Bayes rule in
the classification of spatial Gaussian data, focusing on error rates. For the Gaussian
universal kriging model, the closed-form expression for the ML estimators of regression
parameters in the case of stratified training sample as well as the formula of AER are
derived via semivariograms with broader applicability than covariances.

We expect these findings would allow to reach broader applicability of semivari-
ograms in designing the classifiers of spatial data based on pairwise Bayes discriminant
functions.

Replacing a semivariogram with its estimator hasve only the price of computation
time and is relevant for the analysis of real-world data. Investigations in that direction
are in our plans.
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REZIUMĖ

Klasifikavimo klaidos vertinimas, pagrįstas semivariogramomis Gauso
universalaus krigingo modeliui

K. Dučinskas, L. Dreižienė
Straipsnyje analizuojama erdvinių Gauso duomenų Bajeso klasifikavimo procedūra universalaus
krigingo modeliui. Išvestos išreikštinės maksimalaus tikėtinumo regresijos parametrų įverčių išraiškos
bei aktualioji (įvertinta) klasifikavimo paklaida, pagrįstos semivariogramomis.
Raktiniai žodžiai : porinė Bajeso diskriminantinė funkcija; semivariograma; aktualioji klasifikavimo
klaida
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