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1. Introduction

Mortality is not constant over time; moreover, it changes differently in different age groups. Therefore,
it is important to identify the mortality trend and be able to predict mortality rates accurately.
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2. Lee–Carter model

Suppose that mx,t is the death rate for age x in year t, i.e. the ratio between the total number of deaths
in the population of age x in year t and the total population of age x in year t (Nx,t):

mx,t =
Dx,t

Nx,t
,

and µx,t = ln(mx,t) – empirical force of mortality. Lee and Carter [5] suggested a linear form for the
force of mortality µx,t :

µx,t = ln(mx,t) = αx +βxkt +εx,t , x = 1, ...,A; t = 1, ...,T, (1)

where αx,βx are age-specific parameters, kt – time-specific parameter, and εx,t – independent identically
distributed Gaussian errors N(0,σ2). Parameters αx show the general rate of mortality for a certain
age, and parameters kt – the general rate of mortality for a certain time. It can be easily proved that
the expression (1) of the force of mortality µx,t is invariant with respect to the transformations:

(βx,kt)� (cβx,kt/c); (αx,kt)� (αx− cβx,kt + c) for some c ∈ R\{0}.

So we can require the parameters βx,kt to satisfy these conditions:

A

∑
x=1
βx = 1;

T

∑
t=1

kt = 0. (2)

These conditions ensure the unambiguousness of parameters βx and kt .
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Given the restriction of
T
∑

t=1
kt = 0, parameters αx, x = 1, ...,A, are estimated by averages of the force

of mortality over a time period, i.e.

α̃x =
1
T

T

∑
t=1
µx,t , for all x = 1, ...,A. (3)

Then random variables µx,t − α̃x = βxkt + εx,t , x = 1, ...,A; t = 1, ...,T , are Gaussian N(βxkt ,σ
2).

According to [1] and [5], the optimal method to find the estimators of parameters βx and kt is SVD
(singular value decomposition) of the matrix of variables zx,t = µx,t − α̃x, x = 1, ...,A; t = 1, ...,T .

Given the matrix Z=(zx,t)x=1,...,A; t=1,...,T , we can compute normalized eigenvectors u1 =(u1,1, ...,u1,T )
T

and v1 = (v1,1, ...,v1,A)
T of the matrices ZT Z and ZZT , which correspond to the largest eigenvalue λ1.

Then the estimators of βx, x = 1, ...,A, which satisfy the conditions (2) and estimators of kt , t = 1, ...,T ,
are:

3. Empirical data analysis

Mortality data, population size and the number of deaths in Lithuania, France and Belarus are taken
from the Berkeley Human Mortality Database, University of California (www.mortality.org). Lithua-
nian data is available for the period from 1959 to 2010, for ages 0 to 110 years, for men and women
separately and together.
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Figure 1: Empirical force of mortality of the Lithuanian population

We use the data from 1970 for our cal-
culations because the data until 1970
might be unreliable. From Figure 1,
where the empirical force of mortality
of the Lithuanian population is shown,
we can see that the optimal age interval
for modelling is 20 to 90 years. Anal-
ogous surfaces are similar for France
and Belarus, therefore, for these coun-
tries, we use the same time and age
intervals. Later, the two data subsets
will be taken for men and women sep-
arately:

• Subset 1: 1970 to 2005, 20 to 90
years,

• Subset 2: 2006 to 2010 (2009 for
France), 20 to 90 years.

From the first subset, the parameters of
the model are estimated. From the sec-
ond subset, we can compare the mod-
els and the estimates of the force of
mortality with the empirical data.
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Figure 2: Average empirical force of mortality

Figure 2 plots the average empirical force of mortality µ̄t , t = 1970, ...,2005,
(
µ̄t =

1
71

90
∑

x=20
µx,t

)
for

France, Belarus and Lithuania for the period 1970 to 2005. The mortality of the French population
is characterised by a significant dawnward trend; the average empirical force of mortality of Belarus
increases over time, but with some fluctuations. Meanwhile, the average empirical force of mortality
of Lithuania fluctuates without any visible trend.

4. µx,t forecast for Lithuania

4.1. Classical model

We calculate α̂x, β̂x, x = 20, ...,90, and k̂t , t = 1970, ...,2005, for Lithuanian data. The estimates are
shown in Figure ??. The p-values of the ADF test are 0.4711 for men and 0.4377 for women.

Hence we model k̂t as a random walk with a drift....

4.2. k̂t with one and two lags

Let us consider that k̂t is a random process with one lag, i.e. a second-order autoregressive process
with a drift.

Table 1: The characteristics of the errors.
σ̂rw p-value of K–S test p-value of χ2 test

Men
k̂1t 3.0952 0.3743 0.3851
k̂2t 0.6068 0.02 0.0415

Women
k̂1t 3.1739 0.1655 0.5438
k̂2t 0.7497 0.0074 0.0351

Let us consider that k̂t is a random process with one lag, i.e. a second-order autoregressive process
with a drift

5. Conclusions

While comparing the suitability of the Lee–Carter model for different countries, we have obtained that
the model most accurately describes and predicts mortality for Country.
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