Algebraic values of sines and cosines and their arguments
Articles
Edmundas Mazėtis
Vilniaus University
https://orcid.org/0000-0001-8604-9179
Grigorijus Melničenko
Vytauto Magnus University
Published 2021-03-15
https://doi.org/10.15388/LMR.2020.22717
PDF

Keywords

trigonometric functions sin \alpha, cos \alpha, tg \alpha ir ctg \alpha
rational numbers
algebraic numbers
transcendental numbers
Lindemann–Weierstrass theorem

How to Cite

Mazėtis E. and Melničenko G. (2021) “Algebraic values of sines and cosines and their arguments”, Lietuvos matematikos rinkinys, 61(B), pp. 21-28. doi: 10.15388/LMR.2020.22717.

Abstract

The article introduces the reader to some amazing properties of trigonometric functions. It turns out that if the values of the arguments of the functions sin x, cos x, tg x and ctg x, expressed in radians, are algebraic numbers, then the values of these functions are transcendental numbers. Hence, it follows that the values of all angles of the pseudo-Heronian triangle, including the values of all angles of the Pythagoras or Heron triangle, expressed in radians, are transcendental numbers. If the arguments of functions sin x and cos x, expressed in radians, are equal to x = r 2 \pi, where r are rational numbers, then the values of the functions are algebraic numbers. It should be noted that in this case the argument x = r 2\pi  is transcendental and, if expressed in degrees, becomes a rational.

PDF
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Please read the Copyright Notice in Journal Policy